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We study the gravitational lensing of various static and spherically symmetric non-singular black
holes (and horizonless compact objects of similar size). Via ray tracing the lensing problem is treated
entirely numerically, allowing the study of a wide class of models. We focus on two cases: (i) the
lensing of an accretion disk, and (ii) the lensing of a background object. While the former allows
comparisons between black hole shadow sizes and the general morphology of the accretion disk across
various black hole models, the latter scenario is used to address the gravitational microlensing of such
objects. By assuming proper motion of the gravitational lens, we record the apparent brightness
as a function of time, resulting in a photometric light curve. We find that non-singular black hole
models tend to decrease the Einstein ring and therefore increase the maximum brightness recorded
in microlensing light curves.




1/5 Motivation

There is something very wrong with black holes.



Black holes and singularities

Spherically symmetric and static metric:
ds® = —A(r)dt? + B(r)dr? + r2d6? + r? sin? p?
Invoking the vacuum field equations of general relativity:

1 2GM

A) = gry =) =1-=

The location where A(r) = 0 is called the “event horizon:" a null 3-surface of no return.
The location where A(r) — —o0o is a spacetime singularity. Need to resolve this!
1 2GM 7 r?

A(r):B(T)Ef(r)zl— . TV 1_6_2 for r — 0.

There is a whole “zoo"” of non-singular black hole metrics. Can we constrain this?



1/5 Motivation

No need for new expensive experiments.



These have been taken with the Hubble Space Telescope
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2/5 Mathematical background

Geodesics, gravitational lensing.



Null geodesics

Particle motion described by worldline: z#(X) = ( t(A), r(A), O(A), ©(A) )

4 O:t,,_l_f/T/t/’
f
(.12 2t/2
dQ:B.U do? dP 0= r// + f ( r 2}_ f ) . f,r(9/2 —|—Sin2 990/2)7
0= I Bl
o7 T S 0
0=6" —cosfsinfy? + :
.
2(r" + r0’ cot 0) ¢’

L 0=¢"+

r

Null character is enforced via initial condition g ,2"z” =0,

Motion of light is completely integrable for stationary black holes, leading to simplifications.
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Motion of light is completely integrable for stationary black holes, leading to simplifications.



Theory of gravitational lensing (1/3)

apparent

actual

observer

black hole “lens”

For a pointlike lens, many aspects can be calculated analytically.

For us, it will serve as an important point of comparison for our numerical studies later.



Theory of gravitational lensing (2/3)

} “Einstein radius” rg
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Theory of gravitational lensing (2/3)

} “Einstein radius” rg
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Consider small offset b from observer-lens axis; define angle 5 =

b .
and quantity u = — = —.
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Deviation from axis creates double images.



Theory of gravitational lensing (3/3)

Narayan & Bartelmann ‘96

Angular locations of double images:
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The light curve: “smoking gun” of gravitational microlensing

Narayan & Bartelmann ‘96
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3/5 Ray tracing
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Ray tracing in a nutshell
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Ray tracing in a nutshell
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distant star

black hole

Screen

observer

The light rays hit the source or escape to infinity or fall into the black hole.
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Extracting the light curve (1/2)

T =0.0 T'=0.1 T =0.2 T =0.3 T =04 T =0.5

# of yellow pixels

Intensit
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Extracting the light curve (2/2)
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4/5 Actual results



Result #1: High-resolution renders give correct Einstein ring

)
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Result #2: Verification of numerical setup via double images
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Result #2: Verification of numerical setup via double images
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Result #3: Testing different non-singular black hole models

Resolution: 320x180

Models: Schwarzschild, bump metric, Hayward, horizonless Hayward, Minkowski core.
22 /24



Result #3: Testing different non-singular black hole models
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5/5 Conclusions



Conclusions / open problems / next steps

Gravitational microlensing has so far only been studied for black holes of general relativity.

But it can be a powerful tool to search for discrepancies in close-by events.

Open problems & next steps:

How to extract new physics parameters?
What about black hole rotation?

Effects of black hole proper motion?

Optimizations (adaptive mesh)?

Extensions (radiative transfer)?

Thank you for your attention!



Gravitational microlensing and non-singular black holes

When a black hole passes in front of a luminous background source (like a star), the perceived
brightness of the star temporarily increases due to gravitational lensing. Because the exact image of
the star cannot typically be resolved exactly, this process is called 'microlensing.' This process has
universal properties, but at shorter distances can be used to constrain the black hole metric directly.
In this talk, we will first develop a numerical ray-tracing setup that allows us to depict the black hole
and objects in its environments, and then describe how photometric lightcurves can be extracted
using this method. We will close by comparing the results of general relativity to modified gravity

models featuring non-singular black holes and find that non-singular black holes tend to have larger
brightness maxima.
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