An exact stationary string configuration attached to a rotating black hole

Jens Boos boos@ualberta.ca University of Alberta and

Valeri P. Frolov vfrolov@ualberta.ca University of Alberta

The Ninth Annual Symposium for Graduate Physics Research, University of Alberta, Edmonton Friday, October 19, 2018, 9:45am, CCIS 4-196

Based on...

PHYSICAL REVIEW D 97, 024024 (2018)

Stationary black holes with stringy hair

 ${\rm Jens~Boos}^* ~{\rm and~Valeri~P.~Frolov}^\dagger \\ {\rm \it Theoretical~Physics~Institute,~University~of~Alberta,~Edmonton,~Alberta~T6G~2G7,~Canada}$

(Received 16 November 2017; published 19 January 2018)

PHYSICAL REVIEW D 97, 084015 (2018)

Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

 ${\rm Jens~Boos}^* ~{\rm and~Valeri~P.~Frolov}^\dagger \\ {\rm \it Theoretical~Physics~Institute,~University~of~Alberta,~Edmonton,~Alberta~T6G~2E1,~Canada}$

What are cosmic strings, and should we care?

The spontaneous breaking of a global symmetry G to a smaller group M=G / H can create topologically protected phases of non-zero, gauge-inequivalent vacuum expectation values of some matter field ϕ . (Kibble 1976)

Typical dimension of these defects is $\eta \sim \ell_p \frac{m_p}{m}$, and the typical tension is $\mu \sim \frac{m_p}{\ell_p} \left(\frac{m}{m_p}\right)^3$, where m = symmetry breaking scale. The approximation $\eta \approx 0$ corresponds to a 2D Nambu–Goto string.

Fig. 1: Gauge-inequivalent vacuum expectation values form strings.

In general their interaction with black holes is time-dependent and can only be studied numerically. Our idea: understand some aspects of interaction with **black holes** using analytical techniques.

This is what the first snapshot of a rotating black hole could look like...

This is what the first snapshot of a rotating black hole could look like...

Rotating black holes have very special properties

Rotating black holes (important for astrophysics) are described by the Kerr metric (see last slide). Mathematically, they are a specific subclass of a much larger class of geometries:

Kerr–NUT–(A)dS geometries are the most general Einstein spaces ($\mathrm{Ric}_{\mu\nu} \propto g_{\mu\nu}$) admitting a so-called conformal closed Killing–Yano tensor (\rightarrow principal tensor $h_{\mu\nu} = -h_{\nu\mu}$).

This principal tensor is important (and its existence quite unexpected)! It gives rise to

- primary Killing vector (= stationarity): $\xi^{\mu} = \frac{1}{D-1} \nabla_{\nu} h^{\nu\mu}$
- rank-2 Killing tensors (~ Carter constant): $K_{\mu\nu} = f_{\mu\alpha...}f_{\nu}{}^{\alpha...}$, $f = \star h$
- secondary Killing vectors (~ axisymmetry): $\zeta^{\mu} = K^{\mu}{}_{\nu} \xi^{\nu}$

Let us use these properties of the principal tensor to construct a stationary string configuration.

Cosmic strings \approx Nambu–Goto strings = minimal surfaces

 $http://www.math.hmc.edu/\sim jacobsen/demolab/soapfilm.html \\ http://www.soapbubble.dk/english/science/the-geometry-of-soap-films-and-soap-bubbles/$

Our exact string configuration: "principal Killing strings"

For the Kerr spacetime, the string can be parametrized as

$$X^{\mu}(t,r) = \left(t, r, \theta_0, \phi_0 - \int \frac{a \, dr}{r^2 - 2Mr + a^2}\right).$$

Important: it is tangent to the timelike Killing vector ξ as well as the (ingoing) principal null congruence ℓ .

It can be generalized to include a positive or negative cosmological constant, as well as to higher dimensions.

How to prove minimal surface?

—➤ Can show that trace of extrinsic curvature vanishes!

Proof: Principal Killing surfaces = minimal surfaces

Minimal surfaces have vanishing mean curvature, $\Omega_{(i)} \equiv \gamma^{AB} \Omega_{(i)AB} = 0$.

Rewrite as $\Omega_{(i)} = (\boldsymbol{n_{(i)}}, \boldsymbol{Z}), \quad Z^b = \gamma^{AB} Y^c_{,A} \nabla_c Y^b_{,B}.$

If we can show that ${m Z} \in T\Sigma$, we have proven that they are minimal surfaces.

Calculate:
$$Z^b = -\left(\xi^a \nabla_a \ell^b + \ell^a \nabla_a \xi^b + \xi^2 \ell^a \nabla_a \ell^b\right) = -2\ell^a \nabla_a \xi^b \equiv -2F_a{}^b \ell^a$$

- Multiplying $\nabla_c h_{ab} = g_{ca} \xi_b g_{cb} \xi_a$ by ξ^c implies that $\xi^c \nabla_c h_{ab} = 0$.
- Then, $\mathcal{L}_{\boldsymbol{\xi}}\boldsymbol{h} = 0$ becomes $F_a{}^b h_{bc} = F_c{}^b h_{ba}$.
- Also, know that $h^a{}_b\ell^b = -r\ell^a$.

Defining $V^a \equiv F^a{}_b\ell^b$ one has: $\longrightarrow h^a{}_bV^b = h^a{}_bF^b{}_c\ell^c = F^a{}_bh^b{}_c\ell^c = -rV^a$

The non-degeneracy of h_{ab} then implies that $V^a \propto \ell^a$ which completes the proof.

Principal Killing strings extract angular momentum from black holes.

Interesting physics in the (BH+string) system:

- The string pierces the black hole horizon, but the overall configuration is stationary.
- The string does not extract energy, rather, it extracts angular momentum.
- There is a simple mechanical interpretation:

$$\frac{\mathrm{d}\vec{L}}{\mathrm{d}t} = \vec{\tau} = \Delta\vec{\ell} \times \vec{F}$$

Thank you for your attention.

