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arXiv:2011.12929 [hep-th], submitted to Physics Letters B.
More work on non-local theories with Valeri Frolov and Andrei Zelnikov.



  

Motivation

Non-locality plays an important role in modern physics:

• Entanglement is a non-local phenomenon in quantum theory.
• Many effective actions in quantum field theory are non-local.
• It is probably impossible to define local observables in quantum gravity.
• Non-locality may solve the black hole information loss problem.

But: non-locality also challenges many of our “standard” notions in theoretical physics.

• Causality is typically violated at some scale (and perhaps beyond).
• Variational principle is not necessarily self-consistent.
• Notion of a “local particle” is difficult to define.

Solution: discuss reasonably well-behaved non-local theories, and use asymptotic local properties.
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PART I

QUANTUM THEORY
OF A SCALAR FIELD

creation and annihilation operators • definition of vacuum



  

Classical scalar field

A free classical scalar field in Minkowski spacetime:

We don’t know any real scalar fields in Nature, use it as a toy model.
Use a Fourier transform to express a solution of this field equation:

The frequency      is given by the dispersion relation             .
The coefficients      are the (complex) Fourier components of the field    and satisfy               .

So how can we make this a quantum theory?
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Quantum scalar field

A free quantum scalar field in Minkowski spacetime:

This equation is a differential equation for a “field operator.”
Use a Fourier transform to express a solution of this field equation:

The frequency      is given by the dispersion relation             .

The operators      and      are so-called creation and annihilation operators of the field   .
They can act on the vacuum state      to create or remove quanta of momentum   .
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What is the main idea of these operators?
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state of the
entire system

number of particles 
with momentum   ,
add one with    ,
remove one with    .

number of particles 
with momentum   ,
add one with    ,
remove one with    .



  

Some more basics on creation and annihilation operators

Definition of the vacuum state:

Commutation relations (needed for canonical commutation relations at the Hamiltonian level):

The concrete representation of     and     is not so important. Use basic relations:

Then, many-particle states can be written like this:

You can count particles with the occupation number density operator                .
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PART II

PARTICLE CREATION
BY POTENTIALS

potentials • Bogoliubov coefficients • Lippmann–Schwinger equation



  

Quantum scalar field with time-dependent potential

A quantum scalar field in Minkowski spacetime with time-dependent potential:

This equation is again a differential equation for the “field operator”          .
Use a purely spatial Fourier transform to rewrite a solution of this field equation:

Can now study the equation for the operators         directly:

This is still a very complicated problem.
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Quantum scalar field with time-dependent potential

Let’s assume that the potential vanishes at early and late times,                            .
At those “asymptotic times” there is no potential term and have again the free solution from before:

Note the different creation and annihilation operators at early times and at late times.
There are two different vacua (“in”-vacuum and “out”-vacuum):

Bogoliubov coefficients relate these operators (                           ensures canonical trafo):
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And what does all of this have to do with particle creation?
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Main insight: can extract this factor solely from the
      classical late-time asymptotics!

asymptotic past

asymptotic future
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Lippmann–Schwinger equation

How to extract the late-time asymptotics? Use the retarded Green function:

Then, the solution can be written in Lippmann–Schwinger form like this:

Important:      is a free solution that encodes the asymptotic past (because      vanishes there).
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Lippmann–Schwinger equation

This integral collapses for a delta-shaped potential                   .
This potential also vanishes at early and late times, so we can expect a reasonable result.

The local retarded Green function has this form (sum of positive and negative frequencies):
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Extracting the Bogoliubov coefficient

Collecting all these steps we find the following solution in the future:

Read off the negative frequency components which correspond to out-particles,                    .
This means that there is a non-zero particle number in the asymptotic future.

So, as a recipe: 1. Construct exact solution in presence of potential via Lippmann–Schwinger.
2. Make sure the free solution encodes the correct in-vacuum.
3. Compute the late-time asymptotics.
4. Read off the Bogoliubov coefficient.

But the result is not terribly exciting and could be guessed via dimensional analysis.     12/15
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PART III

EXACTLY SOLVABLE
NON-LOCAL MODEL

non-local Green function • resonant particle creation



  

Non-local model

Let’s consider instead this non-local model:

The non-local retarded Green function satisfies

It has the following important property (DeWitt’s “asymptotic causality”):

This means that at early and late times physics is unchanged. Or is it?
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Non-local model: surprising result!

Performing the same calculations again we find for the particle creation rate:

Observation: there is a new effect solely due to non-locality!

This means that there exists a critical wave number for which the particle creation rate diverges!
(Provided the potential is positive and above a critical threshold:                                           )

This effect is quite universal in this class of non-local theories, since it only assumes asymptotic 
causality. The behavior of the non-local Green function at         dictates the creation rate.
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CONCLUSIONS 
AND OUTLOOK
congratulations • we • made • it



  

Conclusions and outlook

We found an unexpected resonant particle creation due to non-locality.

• This effect is “non-perturbative” since it is an exact solution.
• It arises solely under the assumption of asymptotic causality.
• The scale of non-locality         introduces
   some sort of resonance since it smears
   out sharp delta-shaped objects.

Open questions/future directions:

• Does this happen for other potentials?
• Could it have implications for cosmology?
• What do you think?

Thank you for your attention :)
    15/15www.acousticstoday.org/8-the-world-through-sound-resonance/



  

Abstract

Unexpected features of non-locality: resonant particle production

Let's consider a linear scalar field theory in the presence of an impulsive potential delta(t), which is 
an exactly solvable model. If there is a quantum mechanical vacuum at early times, then the 
potential term at t=0 creates a non-zero particle number at late times far into future. This means 
that the vacuum state of early times is mapped into a non-vacuum state at late times, and this can 
be described by so-called Bogoliubov coefficients in the framework of second quantization/Fock 
space quantization. In this talk I will extend these studies to an exactly solvable non-local model 
and explain how the future particle spectrum is impacted by the presence of non-locality. 
Surprisingly, there appears a strong resonant amplification of certain modes, leading to a burst of 
particles at late times.

Based on: Jens Boos, Valeri P. Frolov, and Andrei Zelnikov, “Resonant particle creation by a time-dependent potential in a nonlocal 
theory,” arXiv:2011.12929 [hep-th], submitted to Physics Letters B.
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