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It is a good week to talk about the Kerr metric...



  

My work on Poincaré gauge gravity with Friedrich W. Hehl

1. Premetric teleparallel theory of gravity and its local and 
linear constitutive law, Eur. Phys. J. C 78 (2018) no. 11;
1808.08048 [gr-qc] (with FWH, Yakov Itin, Yuri Obukhov)

2. Gravity-induced four-fermion contact interaction implies
gravitational intermediate W and Z type gauge bosons,
Int. J. Theor. Phys. 56 (2017) no. 3; 1606.09273 [gr-qc].

3. Quasi-normal modes of the BTZ black hole solution of 
(2+1)-dimensional topological Poincare gauge gravity,
Master’s thesis, University of Cologne, 2015.

    1/13



  

Overview

1. Motivation to look beyond Einstein’s Riemannian manifolds?
2. Brief history of Poincaré gauge gravity

3. Riemann–Cartan geometry
4. Dynamical framework of Poincaré gauge gravity

5. Kerr-(A)dS solution of General Relativity
6. Kerr-(A)dS solution of Poincaré gauge gravity

7. Summary & open problems
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PART I

INTRODUCTION



  

Why look into geometries beyond Einstein’s Riemannian manifolds?
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Physical reasons:

• equivalence principle valid for fermions, not just dust particles (“Kibble’s laboratory”)
• teleparallel equivalent of General Relativity (gravity=force as opposed to gravity=geometry)
• can understand gravity as a gauge theory of the Poincaré group
• torsion plays an eminent role in supergravity
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Mathematical reasons:
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Physical reasons:

• equivalence principle valid for fermions, not just dust particles (“Kibble’s laboratory”)
• teleparallel equivalent of General Relativity (gravity=force as opposed to gravity=geometry)
• can understand gravity as a gauge theory of the Poincaré group
• torsion plays an eminent role in supergravity

Mathematical reasons:

• Which properties/structures/exact solutions are germane to Riemannian manifolds?
• What carries over to more general settings?
• classification of spacetimes is interesting

Pragmatic reason: all solutions of GR are included in Poincaré gauge gravity.



  

Brief history of Poincaré gauge gravity
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Albert Einstein (1879–1955) Élie Cartan (1869–1951)     Dennis Sciama (1926–1999)       Tom W. Kibble (1932–2016)

After Einstein’s General Relativity, Cartan developed the theory of affine connections (Cartan ‘23).
Much later, Sciama (‘60) and Kibble (‘61) independently proposed a gauge theory of gravity based 
on the Poincaré group, in complete analogy to the then-recent Yang–Mills theory from 1954.
This development was continued by Hehl, Hayashi, Trautman, and many others in the 1970s.
Later: metric-affine gravity based on conformal group (Hehl, McCrea, Mielke, Ne’eman ‘95)



  

PART II

POINCARÉ GAUGE GRAVITY



  

Spacetimes with curvature and torsion = Riemann–Cartan geometry
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Around an infinitesimal loop a scalar function    and a vector      pick up the following holonomy:

Here,       is the spacetime torsion, and         is the spacetime curvature.
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Around an infinitesimal loop a scalar function    and a vector      pick up the following holonomy:

Here,       is the spacetime torsion, and         is the spacetime curvature. Given a tetrad
as well as a metric-compatible Lorentz connection       , we can write torsion and curvature as

Fundamental “potential” 1-forms: coframe                 and Lorentz connection                    .

component notation differential form notation



  

Dynamical framework of Poincaré gauge gravity

Given a Lagrangian     that is polynomial in torsion    , curvature      , and coframe    ....
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translational and

rotational excitations
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gravitational energy-

momentum and spin-

angular momentum
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compare to

classical electrodynamics
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Dynamical framework of Poincaré gauge gravity
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Coupling to matter:

For Einstein’s General Relativity:

    6/13

compare to

classical electrodynamics



  

Dynamical framework of Poincaré gauge gravity

Given a Lagrangian     that is polynomial in torsion    , curvature      , and coframe   , define

 

Coupling to matter:

For Einstein’s General Relativity:

    6/13

compare to

classical electrodynamics



  

PART III

EXACT SOLUTIONS



  

Kerr–NUT–(A)dS solution of General Relativity

Orthonormal coframe in Carter’s canonical coordinates (‘68):

Auxiliary functions:

This metric solves the vacuum Einstein equations with cosmological constant   .
•     = mass of the black hole
•     = angular momentum parameter,            
•     = NUT parameter
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Kerr–NUT–(A)dS solution of Poincaré gauge gravity?
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Kerr–NUT–(A)dS solution of Poincaré gauge gravity?

Yes, can be constructed, but the NUT parameter, cosmological constant, and angular momentum 
are related by a constraint equation.
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Kerr–NUT–(A)dS solution of Poincaré gauge gravity?

Yes, can be constructed, but the NUT parameter, cosmological constant, and angular momentum 
are related by a constraint equation.

For now, let us focus on the Kerr–(A)dS solution instead. This goes back to the following works:

• Baekler ('81); Benn, Dereli, and Tucker (‘81); Lee (‘83)
• McCrea ('84); Baekler and Hehl (‘84)
• Baekler, McCrea, and Guerses ('87)
• Baekler and Guerses ('87)
• Baekler, Guerses, Hehl, and McCrea ('88)

The “Golden Ages” of Poincaré gauge gravity: solution-generating methods meet computer algebra!
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Kerr–(A)dS solution of Poincaré gauge gravity

The Lagrangian is quadratic in torsion and curvature:
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• Einstein’s gravitational constant: 
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Kerr–(A)dS solution of Poincaré gauge gravity

The Lagrangian is quadratic in torsion and curvature:

Two coupling constants:

• Einstein’s gravitational constant: 
• a new “strong gravity”-type dimensionless constant: 

Remarks:

• no linear pieces in curvature, no cosmological constant term
• Lagrangian can be regarded as a gravitational analogue of the Yang–Mills Lagrangian
• the torsion-square piece alone gives rise to the standard Newtonian limit

    9/13



  

Kerr–(A)dS solution of Poincaré gauge gravity

Orthonormal coframe:

Auxiliary functions:

This metric solves the vacuum Einstein equations with effective cosmological constant             .
•     = mass of the black hole
•     = angular momentum parameter,            .
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Kerr–(A)dS solution of Poincaré gauge gravity

The torsion barely fits on one screen:

Properties: proportional to mass, null, vanishes at spatial infinity, and              .
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Kerr–(A)dS solution of Poincaré gauge gravity

What about the curvature of the solution?

Can also calculate purely Riemannian curvature based on the Levi–Civita connection alone. Facts:

• Weyl tensor of Riemannian curvature is of Petrov type D and coincides with that of Kerr.
• Tracefree Ricci tensor of Riemannian curvature is non-zero.
• Weyl tensor of Riemann–Cartan curvature vanishes identically.

It is quite interesting to study the properties of the underlying Riemannian geometry. We see that 
the interpretation of the curvature pieces is radically different in the Riemann–Cartan geometry.
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Summary and open problems

For a wide class of Lagrangians quadratic in torsion and curvature there exist exact solutions that 
resemble the Kerr–(A)dS geometry. They come with localized null torsion proportional to the mass.

Questions that I would like to be able to answer:

• Can the null torsion be written in terms of the principal null congruence?
• Does the presence of torsion allow the existence of hidden symmetries?

Other avenues:

• Do the equations describing a particle in this spacetime separate? Under which conditions?

Thank you for your attention.
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Abstract

The family of Kerr-NUT-(A)dS geometries in the context of Einstein’s General Relativity possesses 
many interesting properties, most notably the existence of hidden symmetries encoded by a closed, 
non-degenerate conformal Killing–Yano 2-form. It is of considerable interest to study whether those 
properties extend to generalizations beyond General Relativity.

In this talk I will focus on a framework of theories that allows for non-vanishing torsion as well as 
for curvature, dubbed Poincaré gauge gravity. This class of theories, given a Lagrangian that is 
quadratic in torsion and curvature, possesses an exact solution that in many ways resembles the 
Kerr-(A)dS black hole of General Relativity.

I will present the main properties of this exact solution, which will provide the first steps towards 
understanding the role of hidden symmetries in the context of theories with non-vanishing torsion.

    ---
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