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Based on...
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arXiv: 2004.07420 [gr-qc], to appear in Phys. Rev. D.
More work on ghost-free gravity with Valeri Frolov and Andrei Zelnikov.
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PART I

INFINITELY MANY 
DERIVATIVES

motivation • ghost-free propagators • initial value problem



  

Infinite derivatives cure short-distance singularities

Original motivation stems from Pauli–Villars regularization in quantum field theory. Let us give an 
example in the context of the classical theory of Newtonian gravity. (Later: General Relativity!)

The gravitational potential of a point-particle is singular at the origin (                         ).
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Infinite derivatives cure short-distance singularities

Original motivation stems from Pauli–Villars regularization in quantum field theory. Let us give an 
example in the context of the classical theory of Newtonian gravity. (Later: General Relativity!)

The gravitational potential of a point-particle is singular at the origin (                         ).

The pathological behavior at         can be cured by introducing a heavy-mass modification:

This is called Pauli–Villars regularization, and we assume that            (short distance modification).
For large distances the potential is Newtonian, but for short distance scales it is regularized.
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The Green function of the Pauli–Villars regularized theory has the following structure:
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The Green function of the Pauli–Villars regularized theory has the following structure:

The negative sign relative to the original propagator corresponds to a ghost. Using this Green 
function in quantum field theory can lead to negative probabilities and thereby violate unitarity.
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The negative sign relative to the original propagator corresponds to a ghost. Using this Green 
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The Green function of the Pauli–Villars regularized theory has the following structure:

The negative sign relative to the original propagator corresponds to a ghost. Using this Green 
function in quantum field theory can lead to negative probabilities and thereby violate unitarity.

Can we find a regularization that does not introduce any new degrees of freedom?
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How about using an infinite amount of derivatives?

We will derive this in more detail later.
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How about using an infinite amount of derivatives?

We will derive this in more detail later. Let us take a closer look at the exponential operator.
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How about using an infinite amount of derivatives?

We will derive this in more detail later. Let us take a closer look at the exponential operator.

The object         is often called a form factor. It has the following important properties:

•        “ghost-free condition” •            “on-shell” condition

Let’s understand the role of these conditions better!
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The “ghost-free” condition

For a general form factor        and current       the Poisson equation and Green function are
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The “ghost-free” condition

For a general form factor        and current       the Poisson equation and Green function are

Because         the inverse operator       exists. Equivalent Poisson equation:
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The “ghost-free” condition

For a general form factor        and current       the Poisson equation and Green function are

Because         the inverse operator       exists. Equivalent Poisson equation:

Here,          is a coarse-grained current. Two interpretations of ghost-free infinite derivatives:

• Infinite-derivative field equations with a given source.
• Second-order field equations with an effective source.

Let us calculate the effective current for a specific example!
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The “ghost-free” condition

Calculate for                       and                  in one spatial dimension (           ):
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The “ghost-free” condition

Calculate for                       and                  in one spatial dimension (           ):
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Calculate for                       and                  in one spatial dimension (           ):

This result is just a Gaussian with a width             , justifying the interpretation of
infinite-derivative theories as non-local theories, where    is the scale of non-locality.
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Non-locality = mathematical sandpaperNon-locality = mathematical sandpaper
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The “on-shell” condition

One can find the following representation for the static non-local   -dimensional Green function:
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The “on-shell” condition

One can find the following representation for the static non-local   -dimensional Green function:
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power law non-local modification



  

The “on-shell” condition

One can find the following representation for the static non-local   -dimensional Green function:

The on-shell condition             guarantees that at large distances OR for vanishing non-locality
         we recover the result from the local theory.
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The “on-shell” condition

One can find the following representation for the static non-local   -dimensional Green function:

The on-shell condition             guarantees that at large distances OR for vanishing non-locality
         we recover the result from the local theory. Regularity at        :
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The “on-shell” condition

One can find the following representation for the static non-local   -dimensional Green function:

The on-shell condition             guarantees that at large distances OR for vanishing non-locality
         we recover the result from the local theory. Regularity at        :

Origin of the term “on-shell”:
Interesting fact: solutions of homogeneous equations are the same in local and ghost-free theories!
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Local initial value problem:

 • specify    and       on
 • evolve with

Initial value problem in infinite-derivative ghost-free theories
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Local initial value problem: Ghost-free initial value problem:
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Local initial value problem: Ghost-free initial value problem:

 • specify    and       on  • specify    and       on
 • evolve with  • evolve with

Formal treatment (Barnaby et al): amount of initial data corresponds to poles in propagator.

Initial value problem in infinite-derivative ghost-free theories
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PART II

INFINITE-DERIVATIVE 
GRAVITY

singularities • linearized field equations • static & regular solutions



  

General Relativity, linearized and exact

Consider a small perturbation around Minkowski space,                        with        .
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General Relativity, linearized and exact

Consider a small perturbation around Minkowski space,                        with        .

Field equations (harmonic gauge                with                              ):
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General Relativity, linearized and exact

Consider a small perturbation around Minkowski space,                        with        .

Field equations (harmonic gauge                with                              ):

What is the gravitational field for a particle of mass     at rest?
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General Relativity, linearized and exact

Consider a small perturbation around Minkowski space,                        with        .

Field equations (harmonic gauge                with                              ):

What is the gravitational field for a particle of mass     at rest?

Let us compare the linearized solution to the known exact solution (Schwarzschild black hole).
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General Relativity, linearized and exact

The Schwarzschild solution (Droste 1916; Schwarzschild 1916) can be written as
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General Relativity, linearized and exact

The Schwarzschild solution (Droste 1916; Schwarzschild 1916) can be written as

Linearized solution:
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General Relativity, linearized and exact

The Schwarzschild solution (Droste 1916; Schwarzschild 1916) can be written as

Linearized solution:

The Schwarzschild solution has a curvature singularity at         since                          .
This singularity also exists at the linearized level, and even in the Newtonian limit.

Question: What is the linear solution of infinite-derivative gravity, and what can we learn from it?
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Linearized infinite-derivative gravity

Consider a small perturbation around Minkowski space,                        with        .
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Linearized infinite-derivative gravity

Consider a small perturbation around Minkowski space,                        with        .
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Linearized infinite-derivative gravity

Consider a small perturbation around Minkowski space,                        with        .

Let us set the two form factors equal,                 , and then the linear field equations are

Given      , this can be solved with the Green function method.
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Linearized infinite-derivative gravity

Let us focus on a simple case when                               . We could have guessed the solution:
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Linearized infinite-derivative gravity

Let us focus on a simple case when                               . We could have guessed the solution:

This metric and all its curvature invariants are regular at        . But so what?

• An exact solution of the non-linear infinite-derivative gravity field equations for a point
   particle has not been found yet due to the complicated nature of the equations.
• From the local case we know that the principle of general covariance does not remove
   the singularity of the Newtonian potential.
• Can show that      -metric does not solve Ricci flat field equations.
• Linear problem in GR is not self-consistent, but it is self-consistent in non-local theory.

We need to find out if we can trust the linear solution. Idea: ultrarelativistic objects!
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PART III

ULTRARELATIVISTIC 
OBJECTS

Aichelburg–Sexl metric • Penrose limit • mini black hole formation



  

Ultrarelativistic objects

The gravitational field of light and ultrarelativistic objects can have rather surprising properties.
In 1971, Aichelburg and Sexl demonstrated such an interesting property.
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Take one Schwarzschild metric of mass

and carefully linearize it.

Boost it to the speed of light,

while keeping the product      fixed.

The result is an exact solution of

GR, ready to be served to PRL.

P. C. Aichelburg and R. U. Sexl,
“On the gravitational field of a massless particle,” 
Gen. Rel. Grav. 2 (1971), 303–312.



  

The gravitational field of light and ultrarelativistic objects can have rather surprising properties.
In 1971, Aichelburg and Sexl demonstrated such an interesting property:

 • Take the linearized Schwarzschild metric (with mass parameter    ) as a “seed” metric.
 • Then, perform a boost to a velocity   .
 • Take the limit of          while keeping             fixed, where                   . (“Penrose limit”)
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 • Take the linearized Schwarzschild metric (with mass parameter    ) as a “seed” metric.
 • Then, perform a boost to a velocity   .
 • Take the limit of          while keeping             fixed, where                   . (“Penrose limit”)

The intuitive explanation is simple (but not accurate):

 • The particle becomes asymptotically null, and the curvature scales as                           .
 • All non-linearities do not survive this limit to leading order.
 • But: this only works in four spacetime dimensions.
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The gravitational field of light and ultrarelativistic objects can have rather surprising properties.
In 1971, Aichelburg and Sexl demonstrated such an interesting property:

 • Take the linearized Schwarzschild metric (with mass parameter    ) as a “seed” metric.
 • Then, perform a boost to a velocity   .
 • Take the limit of          while keeping             fixed, where                   . (“Penrose limit”)

The intuitive explanation is simple (but not accurate):

 • The particle becomes asymptotically null, and the curvature scales as                           .
 • All non-linearities do not survive this limit to leading order.
 • But: this only works in four spacetime dimensions.

Now: follow the same recipe for infinite-derivative gravity!
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Ultrarelativistic objects



  

Step 1: Linearized metric, pre-boost

Weak-field metric of a point particle:
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Step 1: Linearized metric, pre-boost

Weak-field metric of a point particle:

Now, introduce boosted coordinates                   and                   .
Let us also introduce the null coordinates                    and                   .
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Step 2: Penrose limit

Boosted metric in the limit          is a pp-wave:
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The potential is obtained in the Penrose limit as follows (            and                ):
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Step 2: Penrose limit

Boosted metric in the limit          is a pp-wave:

The potential is obtained in the Penrose limit as follows (            and                ):

There is a lot of physics in this expression:

 • This potential describes a shock wave that moves along 
 • The gravitational potential is given by the          -dimensional Green function              .
 •               is singular at           in linearized General Relativity.
 •               is finite at            in linearized ghost-free gravity.
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Gyraton metrics in four spacetime dimensions

Linearized General Relativity:

Linearized ghost-free gravity:
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Gyraton metrics in four spacetime dimensions

Linearized General Relativity:

Linearized ghost-free gravity:

One can check that all scalar invariants vanish for these spacetimes (“VSI spacetimes”).
This is expected, since they possess a covariantly constant null Killing vector          .
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Gyraton metrics in four spacetime dimensions

Linearized General Relativity:

Linearized ghost-free gravity:

One can check that all scalar invariants vanish for these spacetimes (“VSI spacetimes”).
This is expected, since they possess a covariantly constant null Killing vector          .

Does this metric solve the non-linear ghost-free equations? Nobody knows (yet). Similar metrics
can be constructed for rotating and extended sources (“realistic gyratons”).
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Gyraton metrics in four spacetime dimensions

Linearized General Relativity:

Linearized ghost-free gravity:

One can check that all scalar invariants vanish for these spacetimes (“VSI spacetimes”).
This is expected, since they possess a covariantly constant null Killing vector          .

Does this metric solve the non-linear ghost-free equations? Nobody knows (yet). Similar metrics
can be constructed for rotating and extended sources (“realistic gyratons”).

Okay, but what can we learn from this class of metrics?
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Collision of ultrarelaticistic objects and black hole formation

This part is based on Frolov et al. Here, we just give the general idea:

• Take a continuum of gyratons and
    let them collide in a small area.

• Average over all fields and obtain the
    total metric, and check where           .

• Result: a black hole can only form if
    the total mass of gyratons exceeds a
    critical mass gap. (But similar results
    in higher-derivative theories as well.)
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PART IV

CONCLUSIONS 
AND OUTLOOK

congrats • we • made • it
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Conclusions and outlook

Infinite-derivative ghost-free physics is very interesting and has several open problems.
We find it insightful to study concrete problems, and demonstrated that:

• The weak-field limit of ghost-free gravity improves the short-distance
    behavior of gravitational fields, with unchanged asymptotics.
• There are unexpected consequences of non-locality, too,
    for example in mini-black hole formation.
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Conclusions and outlook

Infinite-derivative ghost-free physics is very interesting and has several open problems.
We find it insightful to study concrete problems, and demonstrated that:

• The weak-field limit of ghost-free gravity improves the short-distance
    behavior of gravitational fields, with unchanged asymptotics.
• There are unexpected consequences of non-locality, too,
    for example in mini-black hole formation.

Open questions:

• Are there exact, singularity-free solutions?
• Perturbative techniques in non-local QFT?
• Non-locality in cosmological scenarios?

Thank you for your attention :)
    30/30



  

Abstract

Ultrarelativistic objects in non-local infinite-derivative gravity

Einstein's General Theory of Relativity (GR) has proven a remarkably accurate description of gravitation at the very large scales. At small 
scales and high energy densities, however, it is plagued by singularities: these are regions of space and time where the spacetime curvature 
diverges, hence depriving GR of its predictive power. It is believed that a suitable UV completion of classical gravity will solve that 
problem, a task that has proven difficult if treated at the full quantum level.

I will present a classical, Lorentz-invariant, but non-local modification of General Relativity that becomes important at a small length scale 
L. Treated at the linear level the presence of non-locality indeed resolves the singularity problem. However, one may ask whether it is 
justified to take these linear results seriously. In this talk I will explain one argument in favor:

It has long been shown that the linearized gravitational field of a particle of mass m, when boosted to the speed of light in a suitable limit, 
describes an exact solution of Einstein's NON-linear field equations. In this talk I will derive the gravitational field of an ultrarelativistic 
object for non-local gravity in a similar fashion, with the conjecture that it may also solve the non-linear equations (but that still needs to 
be shown). If time permits I will comment on interesting consequences for mini-black hole formation.

Based on: Jens Boos, Jose Pinedo Soto, and Valeri P. Frolov, “Ultrarelativistic spinning objects (gyratons) in non-local ghost-free gravity,” 
arXiv:2004.07420 [gr-qc], to appear in Phys. Rev. D.     ---
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