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Phenomenological Maxwell: Complex spinor feld:

redundancy invariance
conserved external current j conserved U(1) current                

Complete, gauge-theoretical description:

• local U(1) invariance 
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matter; Noether currents

gauge theory = complete description of matter and

                     how it interacts via gauge bosons
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Curvature tensors

rotational curvature

translational curvature

A Riemann–Cartan geometry U4 is a four-dimensional manifold, whose torsion tensor and curvature tensor satisfy

The frst Bianchi identity                        links dynamical properties of torsion to algebraic properties of curvature.

→ In the presence of non-vanishing torsion, the curvature tensor has diferent algebraic properties. Analyze this.



  

Based on Schur–Weyl duality that links representations of Sn and GL(4, R), see literature.

Here,     is the J-th allowed Young diagram, and      is the k-th Young tableaux of the Young diagram     .
Lastly,                   denotes the Young symmetrizer associated with a certain Young tableaux.

This decomposition is block diagonal in the sense that                                                   . 

→ Let us apply this to the Riemann tensor of a U4 geometry with curvature and torsion!

Young decomposition of a general rank-p tensor
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Symmetries of the Riemann tensor: #
• double 2-form: (algebraic curvature tensor) 36
• Bianchi identity (if torsion vanishes) 16
• implications:  (if torsion vanishes) 15 + 1

Young decomposition of the Riemann tensor (                                 ):

Young decomposition of the Riemann curvature tensor (1/2)
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Weyl tensor “paircom” tensor    pseudoscalar
symmetric tracefree Ricci tensor antisymmetric Ricci tensor
Ricci scalar



  

Young decomposition of the Riemann curvature tensor (2/2)
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         GL(4, R)                                     SO(1,3)
“Young decomposition” “Irreducible decomposition”



  

The Bel tensor can be defned in terms of the duals of the Riemann tensor:

The Young decomposition is

In General Relativity, the Bel–Robinson tensor is constructed analogously from the Weyl tensor. It is also related to 
superenergy: a positive defnite quantity for a timelike observer. How to generalize to Poincaré gauge theory?

→ Introduce Bel trace tensor     and subtract traces to defne an algebraic Bel–Robinson tensor.

An algebraic superenergy tensor in Poincaré gauge theory of gravity (1/3)
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Explicit form of the decomposition of the Bel tensor:

An algebraic superenergy tensor in Poincaré gauge theory of gravity (2/3)
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The following is our fnal result:

An algebraic superenergy tensor in Poincaré gauge theory of gravity (3/3)
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The Bel trace tensor lists how diferent curvature ingredients contribute to traces:
• In General Relativity,              implies           .
• In other theories (diferent Lagrangian, diferent geometry with torsion, ...),

 the vacuum feld equations may impose other constraints on the curvature.
• Only the Weyl tensor does not appear in the Bel trace tensor. This is because it is

 traceless,                 , and it also satisfes                   .

The Bel trace tensor allows us to defne a tensor that has the same algebraic properties as the Bel–Robinson tensor. 
Further work needs to be done:

• Would a spinorial treatment give rise to a deeper algebraic understanding?
• What about diferential properties of the algebraic Bel–Robinson tensor?

Thank you for your attention.

Some remarks on the Bel trace tensor
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Conclusions



  

R T

X Z
Y Z' V W

GL(4,R) GL(4,R) SO(1,3)SO(1,3)

V4 geometry with vanishing torsion. U4 geometry with non-vanishing torsion.

Outlook: further decompositions in four dimensions
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