Poincaré gauge theory of gravity
 - An Introduction

Jens Boos
University of Cologne
Gravitation \& Relativity group
Prof. Claus Kiefer, Prof. Friedrich W. Hehl (i.R.)

Sunday, April 19, 2015

BCGS weekend seminar,
Physikzentrum Bad Honnef

Motivation or "what if..."?

History: - field equations of General Relativity, Einstein (1915)

- discovery of spin, Pauli (1924); Uhlenbeck \& Goudsmit (1925)
- relativistic description of spin, Dirac (1928)
- gauge theories: Weyl (1918, 1929, 1950), Yang-Mills (1954)
- gravity as gauge theory: Utiyama (1956), Sciama (1960), Kibble (1961)
"Newton successfully wrote apple $=$ moon, but you cannot write apple $=$ neutron."
- J. L. Synge

The Dirac equation, minimally coupled to gravity:

$$
\mathrm{i} \gamma^{\alpha} \mathrm{e}^{\mathrm{j}}{ }_{\alpha}\left(\partial_{\mathrm{j}}+\frac{\mathrm{i}}{4} \Gamma_{\mathrm{i}}\right) \Psi+\mathrm{m} \Psi=0
$$

Problem: the frame field has to be put into General Relativity by hand.

What if spin had been discovered before General Relativity?
Would Einstein have applied the equivalence principle to a neutron instead?

Physical interpretation of the frame field

The frame field e^{j} supplies us with orthonormal basis vectors on the curved space: (necessary for spinor representation - it is a field of fundamental importance)

Physical interpretation of the frame field

Think about the frame field displayed in a random coordinate space: it rotates!

Is there a gauge principle involved?

Example: a brief description of $\mathrm{U}(1)$ gauge theory

Consider a complex field ϕ under a global $\mathrm{U}(1)$ transformation $\phi \mapsto \mathrm{e}^{\mathrm{i} \alpha} \phi$, with $\alpha \in \mathbb{R}$:

If the theory is invariant under this transformation, we call $\mathrm{U}(1)$ a rigid symmetry.

Example: a brief description of $\mathrm{U}(1)$ gauge theory

Now carry out a local transformation $\phi \mapsto \mathrm{e}^{\mathrm{i} \alpha(\mathrm{x})} \phi$:

Due to x-dependence, any dynamical theory is not invariant anymore.

How do we rescue this? We need a gauge potential A!

Example: a brief description of $U(1)$ gauge theory

The gauge potential restores gauge invariance by $d \mapsto d+$ ie A:

What have we gained? We can construct a Lagrangian for A using $F:=d A$:

$$
\mathcal{L}:=F \wedge \star F+j \wedge A \text { yields electrodynamics with conserved current } j
$$

Towards a gauge theory of gravity

We saw: to describe electrodynamics as a gauge theory, we have to

1. forget about electrodynamics (!)
2. carry out a gauge procedure with a suitable group, here: $\mathrm{U}(1)$
3. obtain electrodynamics for free from gauge curvature Lagrangian

To describe gravity as a gauge theory, we first have to forget about gravity.

What remains if we do that?
special relativity,
and fields propagating on flat Minkowski space

Note the difference: symmetries in external space, not in internal space.

Symmetries of Minkowski space

Translational invariance:

Rotational invariance:
six parameters
conserved spin-angular momentum

Total symmetry group: the Poincaré group $P(1,3)=T^{1,3} \rtimes \mathrm{SO}(1,3)$

Poincaré gauge theory of gravity

After applying the gauge procedure, there are two gauge fields:

- the coframe $\vartheta^{\mu}=\mathrm{e}_{\mathrm{i}}{ }^{\mu} \mathrm{d} x^{\mathrm{i}}$, which is essentially the frame field translational invariance, four parameters field strength: torsion source for torsion: spin-angular momentum
- the Lorentz connection $\Gamma_{\mu \nu}$, an additional gauge potential rotational invariance, six parameters
field strength: curvature source for curvature: energy-momentum

These gauge potentials can be used to define a viable theory of gravity (Einstein-Cartan theory in a spacetime with curvature and torsion).

We fall back to General Relativity for vanishing torsion.

Conclusions \& Outlook

- Yes, it is possible to formulate gravity as a gauge theory.
- In Poincaré gauge theory, the frame field $\mathrm{e}^{j}{ }_{\mu}$ is the gauge potential of translations, and it is accompanied by the Lorentz connection $\Gamma_{\mu \nu}$ as the rotational potential
- Gauge approach helpful for quantization?
- see also: Loop Quantum Gravity (but vanishing torsion)

Literature:
M. Blagojevic and F. W. Hehl (eds.), "Gauge Theories of Gravitation - A reader with commentaries," (Imperial College Press, London, 2013)

