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Introduction and outline

Question: What do quantum field theory and gravity have in common?

Quantum field theory: Gravity:

• states in a Hilbert space, • dynamic spacetime
• field operators on Minkowski space • fields on curved background
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Introduction and outline

Question: What do quantum field theory and gravity have in common?

Quantum field theory: Gravity:

• states in a Hilbert space, • dynamic spacetime
• field operators on Minkowski space • fields on curved background

→ but both are intrinsically tied to the Poincaré group

Outline:

0. The Poincaré group
1. Quantum field theory
2. Poincaré gauge theory of gravity
3. Putting it all together
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0. The Poincaré group

Isometry group of Minkowski space. Noether's theorem predicts conserved energy-
momentum, angular momentum, and orbital angular momentum.

Poincaré group = {n translations}   {         Lorentz transformations}
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0. The Poincaré group

Isometry group of Minkowski space. Noether's theorem predicts conserved energy-
momentum, angular momentum, and orbital angular momentum.

Poincaré group = {n translations}   {         Lorentz transformations}

Lie algebra:

Casimir operators:
→ values are independent of representation (scalars)

Pauli–Lubanski pseudovector (in 4D only):

semidirect product

2/8



  

1. QFT: Wigner's little group

Why is the Poincaré group important in particle physics?
→ Wigner (1939): it allows us to invariantly classify one-particle states
    (momentum eigenvalues given by                         )

How do we find additional good quantum numbers (little group procedure)?

3/8



  

1. QFT: Wigner's little group

Why is the Poincaré group important in particle physics?
→ Wigner (1939): it allows us to invariantly classify one-particle states
    (momentum eigenvalues given by                         )

How do we find additional good quantum numbers (little group procedure)?

1. Lorentz transformed momentum → unitary transformation on quantum state:

3/8



  

1. QFT: Wigner's little group

Why is the Poincaré group important in particle physics?
→ Wigner (1939): it allows us to invariantly classify one-particle states
    (momentum eigenvalues given by                         )

How do we find additional good quantum numbers (little group procedure)?

1. Lorentz transformed momentum → unitary transformation on quantum state:

2. Find Wigner little group elements W with                 , k = reference vector

3/8



  

1. QFT: Wigner's little group

Why is the Poincaré group important in particle physics?
→ Wigner (1939): it allows us to invariantly classify one-particle states
    (momentum eigenvalues given by                         )

How do we find additional good quantum numbers (little group procedure)?

1. Lorentz transformed momentum → unitary transformation on quantum state:

2. Find Wigner little group elements W with                 , k = reference vector

3. Find invariants quantities (“Casimir operators”) of W

3/8



  

1. QFT: Wigner's little group

Why is the Poincaré group important in particle physics?
→ Wigner (1939): it allows us to invariantly classify one-particle states
    (momentum eigenvalues given by                         )

How do we find additional good quantum numbers (little group procedure)?

1. Lorentz transformed momentum → unitary transformation on quantum state:

2. Find Wigner little group elements W with                 , k = reference vector

3. Find invariants quantities (“Casimir operators”) of W

Example: • p² = -m² (massive particle): W = SO(3) → spin as quantum number
• p² = 0 (massless particle): W = SE(2) → helicity as quantum number

    (or continuous spin particles)
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1. QFT: Relativistic wave equations

Suitable real-space representation of the Poincaré algebra:

How is that related to relativistic wave equations?
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1. QFT: Relativistic wave equations

Suitable real-space representation of the Poincaré algebra:

How is that related to relativistic wave equations?

• Klein–Gordon equation as an eigenvalue equation:
• can be generalized for arbitrary spin values using Wigner's little group technique

How can that all be related to gravity?

• Poincaré group is the isometry group of Minkowski space
    → cannot simply be extended to a curved background

• let us consider Poincaré gauge theory as a viable theory of gravity
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2. Poincaré gauge theory of gravity (1/2)

“Newton successfully wrote apple = moon, but you cannot write apple = neutron.”
– J. L. Synge

Consider a matter field (e.g. Dirac spinor) on Minkowski background:
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2. Poincaré gauge theory of gravity (1/2)

“Newton successfully wrote apple = moon, but you cannot write apple = neutron.”
– J. L. Synge

Consider a matter field (e.g. Dirac spinor) on Minkowski background:

Make this theory invariant under local Poincaré transformations:

Compared to Minkowski space, we are forced to introduce gauge potentials:
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2. Poincaré gauge theory of gravity (2/2)

Field strengths related to the potentials      and       :
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Field strengths related to the potentials      and       :

This class of theories indeed describes gravity (e.g. Einstein–Cartan theory) and
includes General Relativity in the limit           with the Lagrangian                   .
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2. Poincaré gauge theory of gravity (2/2)

Field strengths related to the potentials      and       :

This class of theories indeed describes gravity (e.g. Einstein–Cartan theory) and
includes General Relativity in the limit           with the Lagrangian                   .

Translation into differential geometry:

• Latin indices  coordinate indices, Greek indices  orthonormal frame indices↔ ↔
• gauge potentials      and        correspond to tetrad and connection
• gauge curvatures      and        correspond to torsion and curvature
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2. Deformed Lie algebra

Field strengths related to the potentials      and       :

Note that the Poincaré transformations act on space itself (not some internal space):
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2. Deformed Lie algebra

Field strengths related to the potentials      and       :

Note that the Poincaré transformations act on space itself (not some internal space):

This deformed Lie algebra is unique to external gauge theories.
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3. Putting it all together?

Deformed Lie algebra:

Questions:

• What is the resulting group?
• How do the Casimir operators look like?
• What does that tell us about particles on a curved background?
• ...

Thank you for your attention.
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Appendix: conserved Noether currents for the Poincaré group

Conserved Noether currents:

energy-momentum:

total angular momentum:

Note: the semidirect product structure is everywhere.
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