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Motivation & Outline

Differential forms provide a superior formalism as compared to vector calculus.

But: we can also use it to understand physics more easily.

|. Differential forms in 3D Euclidean space
» Hodge dual
= visualization of forms
= example 1: classical force

= example 2: vacuum electrodynamics

|l. Differential forms in gauge theory
= electrodynamics as a U(1) gauge theory
= Stokes' theorem and the Wilson loop

= General Relativity and beyond

[Il. Conclusions & Summary
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|. Differential forms in 3D Euclidean space

A p-form in n dimensions has # = Wip)! independent components.

For n=3: one O-form, three 1-forms, three 2-forms, one 3-form, and that's it.

1 dx dx A dy dx A dy A dz
dy dx A dz
dz dy A dz

Note that there is a correspondence between p- and (n-p)-forms via the Hodge dual:

_ l ai a _ 1 ai...d b1 bn_
* W = * (p!wal___apdx A - Adx P) ICEDIZ P€ay...apby...by_p AX T A v s AdXPNP

In 3D one has* x =1, and therefore

dx ~dyAdz, dy~dzadx, dz~dxady, 1~dxaAdyadz.



Visualization of differential 1-forms (here: in 3D)
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Visualization of differential 1-forms (here: in 3D)

How does a 1-form act on a vector? Simple counting: 9, 2 dx® =0},

How can we count geometrically? Count intersections:
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Visualization of differential 1-forms (here: in 3D)

How does a 1-form act on a vector? Simple counting: 3, Jdx® =0

How can we count geometrically? Count intersections:

/

VvV _Iw=0
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Visualization of differential 1-forms (here: in 3D)

Why does that work?
— a (n-1)-dimensional hypersurface is described by an n-dimensional normal vector.

A
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Visualization of differential 1-forms (here: in 3D)
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Visualization of differential 1-forms (here: in 3D)

So which form is the “strongest” one?

_— —

Physical interpretation: work along the direction specified by vector.
6/22



Visualization of differential 1-forms: a word of caution

Explicit construction can be very hard, for example:

w = 12ydx — sin(y)dy + zx°dz = f(x,y, z)dx + g(x,y,z)dy + h(x,y, z)dz
1. Corresponding vector field is v =0y + g0, + hd,, OK.
2. Can we derive a potential? Only possible for dw =0 < V xv =0.

= YES: Very good, see before. Differential form = equipotential surfaces.
= NO: More complicated, but surfaces can still be built locally.

— Bottom line: locally, the surface picture is reasonable,

but be careful with global concepts.



Visualization of differential 2-forms (here: in 3D)
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What about 2-forms? Need two “counting surfaces”!

Physical interpretation: flux through area spanned by the two vectors.
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What about 3-forms? Need three “counting surfaces”!
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Visualization of differential 3-forms (here: in 3D)

What about 3-forms? Need three “counting surfaces”!

Physical interpretation: density in volume given by three vectors
9/22



In summary:

The exterior product visualized:

W= -
"W =

10/22




Example 1: classical force
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Example 1: classical force

Imagine you want to determine a force F on a particle @ :

/.g—k(k W =F - ox

®
X
— what we really do: supply a vector 0x and retrieve a number W.

— force is a 1-form, such that W =0x 2 F

— operational interpretation of differential forms?



Example 2: vacuum electrodynamics

The field strength 2-form is given by

F =dt A (Exdx+ E,dy + E,dz) + Bydy Adz + Bydz Adx + B,dx Ady .
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Example 2: vacuum electrodynamics

The field strength 2-form is given by

F =dt A (Exdx+ E,dy + E,dz) + Bydy Adz + Bydz Adx + B,dx Ady .

' Dl
electric field magnetic field
< 1-form « 2-form

This is equivalent to the antisymmetric (g) tensor

(0 E, E, E,
| -E 0 -B, B,
(Fuv) = -E, B, 0 - B,
\-E, -B, B 0 )

Translation formulas: ~ F=2F,gdx* adx”,  F,, =0, 1(9,JF)
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Example 2: vacuum electrodynamics

The field strength 2-form is given by

F =dt A (Exdx+ E,dy + E,dz) + Bydy Adz + Bydz Adx + B,dx Ady .

' Dl
electric field magnetic field
< 1-form « 2-form

Operational interpretation of the electric field:

/.§+55 W = E- dx

o
X

In differential form language: W = 6x JE — equivalent to the classical force.
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Example 2: vacuum electrodynamics

The field strength 2-form is given by

F =dt A (Exdx+ E,dy + E,dz) + Bydy Adz + Bydz Adx + B,dx Ady .

electric field magnetic field
< 1-form « 2-form

Operational interpretation of the magnetic field 2-form B:

/
ZE

— magpnetic flux ® =u 1 (v1B)

1<

Vind = _at(1>

conducting loop



Il. A brief introduction to U(1) gauge theory

Consider a complex field¢ under a global U(1) transformation® — €& witha € R :

| NY

U(1)

P

If the theory is invariant under this transformation, we call U(1) a rigid symmetry.




Il. A brief introduction to U(1) gauge theory

Now carry out a local transformation ¢ — () g

‘ \

local U(1)

Vs
[ NS

Due to x-dependence, any dynamical theory is not invariant anymore.

How do we rescue this? We need a gauge potential Al



Il. A brief introduction to U(1) gauge theory

The gauge potential restores gauge invariance by d — d + e A:

1/ _ NV

local U(1)

/ <% g

What have we gained? We can construct a Lagrangian for A using F := dA:

L :=F AxF+jAA yields electrodynamics with conserved current j




Electrodynamics: the Aharonov—Bohm effect

Consider the wave function W(x,t) of a particle which travels around a closed loop .

http://physics.aps.org/story/v28/st4



Electrodynamics: the Aharonov—Bohm effect

Consider the wave function W(x,t) of a particle which travels around a closed loop .

It picks up the phase shift €%, with ¢ o< § A
The path % is closed, and for a trivial tocgology this implies that € = 0S.

Stokes' theorem then gives us ¢ o< ¢ A o< ¢ dA such that €'? € U(1).
8S S



The Wilson loop

We saw: integrating the gauge connection around a closed loop gives a group element.
— Wilson loop W¢ := Tr[P expi ¢ A]
€

In gauge theories, A = A%t,, where t, are the generators of the Lie group.
gaug g g
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The Wilson loop

We saw: integrating the gauge connection around a closed loop gives a group element.
— Wilson loop W := Tr[P expicg; A]
In gauge theories, A = A%t,, where t, are the generators of the Lie group (Hi Gang!).
— Wilson loop = map from Lie algebra to the group (cf. exponential map)
Non-trivial interpretation arises via Stokes and holonomy of the connection (Hi Tibra!).
Why is it interesting?
= Yang—Mills theories

= Loop Quantum Gravity
* but even in General Relativity, if you look for it...



Another example: General Relativity
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Another example: General Relativity

Three facts:

1

= On the manifold, we have a non-vanishing curvature 2-form:R¥,, = ER“m/gdxo‘ A dxP

= Curvature 2-form related to the connection 1-form *, via R*, :=dl*, +T#,AT%,

= Parallel transport of vector along closed loop OS vyields a rotation:

surface S
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Another example: General Relativity

Three facts:

1

= On the manifold, we have a non-vanishing curvature 2-form:R¥,, = ER“m[gdxo‘ A dxP

= Curvature 2-form related to the connection 1-form *, via R*, :=dl*, +T#,AT%,

= Parallel transport of vector along closed loop OS vyields a rotation:

surface S

M, = [ ZRF, o pdx® A dx”
S

Interpretation: v* =M#, v®

Remember: R*, = “DI'*,” (just like F = dA)

— Stokes: The matrix M¥, is the holonomy of
the curvature 2-form around 0S .

21/22



I[1]. Conclusions

We find:

» Differential forms tell us about physics.

= They can be (locally) visualized as planes counting intersections with vectors.

= They have a broad application range, including gauge theories.

v _w=3
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Abstract

Differential forms: from classical force to the Wilson loop

We start by reviewing basic properties of differential forms in three dimensions. Using
the Hodge star and thereby deriving a visualization procedure, we move on to classical
mechanics and vacuum electrodynamics. Therein, differential forms can be interpreted

operationally, and their full physical significance becomes clear.

We now move on to more abstract grounds: we revisit electrodynamics as a gauge
theory, and discuss its connection 1-form and its relation to the group U(1). We close
by motivating the geometric interpretation of connection 1-forms in gauge theories
using the Wilson loop, and sketch its application to General Relativity and beyond.
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