Issued: September 24, 2021 Due: 11am, October 1, 2021 Official website: http://spintwo.net/Courses/PHYS-581-Differential-Geometry-for-Physicists/

Please work on this problem set on your own; it should be possible to complete it with the lecture notes and no other external help. If you have questions you can email the instructor, Jens Boos (jboos@wm.edu), or make use of the office hours on Monday, 10am–11am, Small 235 (*note: room change*). After you have completed the assignment please feel free to discuss it with other students.

1 Quick questions

(a) Which equations have mistakes in them?

 $\begin{bmatrix} &] v^{\mu} = e^{\mu}{}_{i} v^{i} \\ & [&] v^{\mu} = e^{\mu}{}_{i} v^{i} \\ & [&] T_{ijk} = e^{\mu}{}_{i} e^{\nu}{}_{j} e^{\rho}{}_{k} T_{\mu\nu\rho} \\ & [&] M^{i}{}_{j} = e^{\mu}{}_{i} e^{\nu}{}_{j} M^{\mu}_{\nu}$

(b) Which of the following components belong to the tensor $\underline{T} = x\partial_x \otimes dy - 2\partial_y \otimes dz$?

 $\begin{bmatrix} &] & T^{x}{}_{y} = x \\ & [&] & T^{y}{}_{x} = x \\ & [&] & T^{z}{}_{z} = 0 \\ & [&] & T^{y}{}_{z} = -2 \end{bmatrix}$

(c) Select all expressions that are identical.

 $\begin{bmatrix} \\ \\ \end{bmatrix} T^{i}{}_{j} \hat{e}_{i} \otimes \hat{\vartheta}^{j} \\ \begin{bmatrix} \\ \\ \\ \end{bmatrix} T^{\mu}{}_{j} \partial_{\mu} \otimes \hat{\vartheta}^{j} \\ \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} T^{i}{}_{\nu} \hat{e}_{i} \otimes \mathrm{d}x^{\nu} \\ \begin{bmatrix} \\ \\ \\ \end{bmatrix} T^{\mu}{}_{\nu} \partial_{\mu} \otimes \mathrm{d}x^{\nu} \end{bmatrix}$

(d) A $\binom{2}{0}$ tensor <u>T</u> is antisymmetric if its components satisfy $T^{\mu\nu} = -T^{\nu\mu}$. Which of these tensors are antisymmetric?

 $\begin{bmatrix} \end{bmatrix} \underline{T} = x\partial_x \otimes \partial_y - y\partial_y \otimes \partial_x \\ \begin{bmatrix} \end{bmatrix} \underline{T} = x\partial_x \otimes \partial_y \\ \begin{bmatrix} \end{bmatrix} \underline{T} = 0 \\ \begin{bmatrix} \end{bmatrix} \underline{T} = x(\partial_z \otimes \partial_y - \partial_y \otimes \partial_z) \end{bmatrix}$

(e) How many independent components does an antisymmetric $\binom{2}{0}$ tensor have in *n* dimensions?

 $\begin{bmatrix} & & & \\ &$

2 Frames and coordinates

In the last assignment we introduced the tensor η , which in the coordinates $x^{\mu} = (r, \theta, \varphi)$ is

$$\underline{\eta} = \eta_{\mu\nu} \mathrm{d}x^{\mu} \otimes \mathrm{d}x^{\nu} = \mathrm{d}r \otimes \mathrm{d}r + r^{2} \mathrm{d}\theta \otimes \mathrm{d}\theta + r^{2} \sin^{2}\theta \mathrm{d}\varphi \otimes \mathrm{d}\varphi.$$
(1)

(a) Consider now the abstract cobasis $\hat{\vartheta}^j$ (with j = 1, 2, 3) given by

$$\hat{\vartheta}^1 = \mathrm{d}r, \quad \hat{\vartheta}^2 = r\mathrm{d}\theta, \quad \hat{\vartheta}^3 = r\sin\theta\mathrm{d}\varphi.$$
 (2)

Recall that we defined the object $e_{\mu}{}^{j}$ via $\hat{\vartheta}^{j} = e_{\mu}{}^{j} dx^{\mu}$. Read off the coefficients $e_{\mu}{}^{j}$.

$e_r{}^1 =$,	$e_r{}^2 =$,	$e_r^{\ 3} =$
$e_{\theta}{}^1 =$,	$e_{\theta}{}^2 =$,	$e_{\theta}{}^3 =$
$e_{\varphi}^{1} =$,	$e_{\varphi}^{2} =$,	$e_{\varphi}^{3} =$

(b) Show by direct substitution that

$$\underline{\eta} = \hat{\vartheta}^1 \otimes \hat{\vartheta}^1 + \hat{\vartheta}^2 \otimes \hat{\vartheta}^2 + \hat{\vartheta}^3 \otimes \hat{\vartheta}^3 \,. \tag{3}$$

(c) Read off the components of η in this abstract basis:

- (d) The abstract basis and cobasis are dual to one another such that $\hat{e}_i \,\lrcorner\, \hat{\vartheta}^j = \delta_i^j$. Find the expressions for \hat{e}_i expanded in terms of the coordinate basis ∂_{μ} and verify that they are dual to one another. Example: $\hat{e}_1 = \partial_r$ such that $\hat{e}_1 \,\lrcorner\, \hat{\vartheta}^1 = \partial_r \,\lrcorner\, dr = \delta_r^r = 1$.
- (e) The abstract basis \hat{e}_i is related to the coordinate basis ∂_{μ} via $\hat{e}_i = e^{\mu}{}_i \partial_{\mu}$. Using the results from (d), read off the "vielbein" coefficients $e^{\mu}{}_i$.

$e^{r}{}_{1} =$,	$e^{r}{}_{2} =$,	$e^{r}{}_{3} =$
$e^{\theta}{}_1 =$,	$e^{\theta}{}_2 =$,	$e^{\theta}{}_{3} =$
$e^{\varphi}{}_1 =$,	$e^{\varphi}{}_2 =$,	$e^{\varphi}{}_3 =$

(f) Finally, verify that the coefficients $e^{\mu}{}_{i}$ and $e_{\nu}{}^{j}$ really satisfy $e^{\mu}{}_{i}e_{\mu}{}^{j} = \delta^{j}_{i}$ as well as $e^{\mu}{}_{i}e_{\nu}{}^{i} = \delta^{\mu}_{\nu}$.