Issued: September 17, 2021 Due: 11am, September 24, 2021 Official website: http://spintwo.net/Courses/PHYS-581-Differential-Geometry-for-Physicists/

Please work on this problem set on your own; it should be possible to complete it with the lecture notes and no other external help. If you have questions you can email the instructor, Jens Boos (jboos@wm.edu), or make use of the office hours on Monday, 10am–11am, Small 340. *After* you have completed the assignment please feel free to discuss it with other students.

1 Quick questions

(a) Which equations have mistakes in them?

 $\begin{bmatrix} &] \underline{v} = y\partial_x - x\partial_y \\ & [&] \underline{M} = \partial_y \otimes dy - 27z^2\partial_z \otimes dx \\ & [&] \underline{T} = T^{\alpha}{}_{\beta\gamma}dx^{\alpha} \otimes dx^{\beta} \otimes dx^{\gamma} \\ & [&] \underline{T} = T^{\alpha}{}_{\beta\gamma}\partial_{\alpha} \otimes dx^{\beta} \otimes dx^{\gamma} \end{bmatrix}$

(b) What rank $\binom{p}{q}$ do the following tensor components have?

 $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

(c) Select all expressions that are identical.

 $\begin{bmatrix} &] & T^{i}{}_{j} \, \omega_{i} \, v^{j} \\ & [&] & T^{\alpha}{}_{\beta} \, \omega_{\alpha} \, v^{\beta} \\ & [&] & T^{i}{}_{k} \, \omega_{i} \, v^{k} \\ & [&] & T^{k}{}_{i} \, v^{i} \, \omega_{k} \end{bmatrix}$

(d) A $\binom{2}{0}$ tensor \underline{T} is symmetric if its components satisfy $T^{\mu\nu} = T^{\nu\mu}$. Which of these tensors are symmetric?

 $\begin{bmatrix} &] \underline{T} = x\partial_x \otimes \partial_y - \partial_y \otimes \partial_x \\ & [&] \underline{T} = x\partial_x \otimes \partial_y \\ & [&] \underline{T} = 0 \\ & [&] \underline{T} = x(\partial_x \otimes \partial_y + \partial_y \otimes \partial_x) \end{bmatrix}$

(e) How many independent components does a symmetric tensor have in n dimensions?

 $\begin{bmatrix} & & \\ &$

2 Coordinate transformations

(a) Consider the $\binom{0}{2}$ tensor η expressed in the coordinates $\{x, y, z\}$:

$$\eta = \eta_{\mu\nu} \,\mathrm{d}x^{\mu} \otimes \mathrm{d}x^{\nu} = \mathrm{d}x \otimes \mathrm{d}x + \mathrm{d}y \otimes \mathrm{d}y + \mathrm{d}z \otimes \mathrm{d}z \,. \tag{1}$$

Read off all of its components in the $\{x, y, z\}$ coordinates:

$\eta_{xx} =$,	$\eta_{xy} =$,	$\eta_{xz} =$,
$\eta_{yx} =$,	$\eta_{yy} =$,	$\eta_{yz} =$,
$\eta_{zx} =$,	$\eta_{zy} =$,	$\eta_{zz} =$	•

(b) Transform the above tensor to the new coordinates $\{r, \theta, \varphi\}$ given by

$$x = r\sin\theta\cos\varphi, \quad y = r\sin\theta\sin\varphi, \quad z = r\cos\theta,$$
 (2)

and show that one obtains

$$\underline{\eta} = \mathrm{d}r \otimes \mathrm{d}r + r^2 \,\mathrm{d}\theta \otimes \mathrm{d}\theta + r^2 \sin^2\theta \,\mathrm{d}\varphi \otimes \mathrm{d}\varphi \,. \tag{3}$$

Hint: Start with Eq. (1) and use relations of the form $dx = \frac{\partial x}{\partial r}dr + \frac{\partial x}{\partial \theta}d\theta + \frac{\partial x}{\partial \varphi}d\varphi$, and similar for y and z, making use of the transformations (2).

(c) Read off the components of η in the $\{r, \theta, \varphi\}$ coordinates:

$\eta_{rr} =$,	$\eta_{r\theta} =$,	$\eta_{r\varphi} =$,
$\eta_{\theta r} =$,	$\eta_{\theta\theta} =$,	$\eta_{\theta\varphi} =$,
$\eta_{\varphi r} =$,	$\eta_{\varphi\theta} =$,	$\eta_{\varphi\varphi} =$	

(d) Optional: Do you know what this tensor η is called?

3 More coordinate transformations

Consider the vector field \underline{v} which in Cartesian coordinates $\{x, y\}$ is given by $\underline{v} = x\partial_y - y\partial_x$. We use here the shorthand notation $\partial_x = \frac{\partial}{\partial x}$, and so on.

(a) What are the components of this vector field?

$$v^x =$$
, $v^y =$

- (b) Visualize this vector field in the xy-plane.
- (c) Construct a covector field $\underline{\omega}$ that satisfies $\underline{\omega}(\underline{v}) = x^2 + y^2$?
- (d) Consider now the polar coordinates $\{\rho, \varphi\}$ where $x = \rho \cos \varphi$ and $y = \rho \sin \varphi$, and express the vector field \underline{v} in these coordinates. *Hint:* Use $\partial_x = \frac{\partial \rho}{\partial x} \partial_\rho + \frac{\partial \varphi}{\partial x} \partial_\varphi$ and $\partial_y = \frac{\partial \rho}{\partial y} \partial_\rho + \frac{\partial \varphi}{\partial y} \partial_\varphi$.
- (e) In your diagram of task (b), visualize the local direction of the basis vector fields ∂_{ρ} and ∂_{φ} . (We have not yet discussed the metric, so feel free to draw all of these vectors with unit length.)