Issued: September 10, 2021 Due: 11am, September 17, 2021 Official website: http://spintwo.net/Courses/PHYS-581-Differential-Geometry-for-Physicists/ Please work on this problem set on your own; it should be possible to complete it with the lecture notes and no other external help. If you have questions you can email the instructor, Jens Boos (jboos@wm.edu), or make use of the office hours on Monday, 10am–11am, Small 340. After you have completed the assignment please feel free to discuss it with other students. ## 1 Quick questions | (a) | Select all items that are <i>not</i> a vector. | |-----|--| | [[|] velocity] temperature] acceleration] energy | | (b) | Which equations have mistakes in them? | | [| $\begin{array}{l} \underline{v}=v^{i}\hat{e}^{i}\\ \underline{v}=v^{i}\hat{e}_{i}\\ \underline{M}=M^{ij}\hat{\vartheta}_{i}\otimes\hat{\vartheta}_{k}\\ \underline{T}=T^{ijk}\hat{\vartheta}_{i}\otimes\hat{\vartheta}_{j} \end{array}$ | | (c) | Which properties does a vector space have to satisfy? | | [|] Adding two elements of the vector space yields another element of the vector space.] Multiplying an element of the vector space with an element of the field (\mathbb{R} or \mathbb{C}) yields another element of the vector space.] You can divide elements by one another.] There has to be a product that maps two elements of the vector space into the field (\mathbb{R} or \mathbb{C}). | | (d) | In the notation of quantum mechanics, which of the following objects is a rank $\binom{0}{2}$ tensor? | | [| $ \begin{array}{l} \langle \phi \otimes \langle \psi \\ \chi \rangle \otimes \langle \phi \\ \chi \rangle \otimes \lambda \rangle \\ \langle \phi \chi \rangle \end{array} $ | | (e) | How many independent components does a rank $\binom{2}{3}$ tensor have in n dimensions? | | [|] $5n$
] $n^2 + n^3$
] $(5n)!$
] n^5 | ## 2 Tensor algebra Let \underline{v} be a vector, $\underline{\omega}$ be a covector, \underline{M} be a $\binom{0}{2}$ tensor, \underline{F} be a $\binom{2}{0}$ tensor, and \underline{T} be a $\binom{2}{2}$ tensor. The basis is called \hat{e}_i and the cobasis is called $\hat{\vartheta}^i$, and we work in n dimensions. (a) Expand \underline{v} , $\underline{\omega}$, \underline{M} , \underline{F} , and \underline{T} in this basis. (b) Why is $\underline{M} + \underline{F}$ not a tensor? (c) In the lecture we learned how to use tensor contraction to create scalar quantities. Write down 3 such scalar quantities of your choice involving the symbols \underline{v} , $\underline{\omega}$, \underline{M} , \underline{F} , and \underline{T} and give the resulting expression in components. (Example: $\underline{M}(\underline{v},\underline{v}) = M_{ij}v^iv^j$.)