Issued: September 10, 2021 Due: 11am, September 17, 2021

Official website: http://spintwo.net/Courses/PHYS-581-Differential-Geometry-for-Physicists/

Please work on this problem set on your own; it should be possible to complete it with the lecture notes and no other external help. If you have questions you can email the instructor, Jens Boos (jboos@wm.edu), or make use of the office hours on Monday, 10am–11am, Small 340. After you have completed the assignment please feel free to discuss it with other students.

1 Quick questions

(a)	Select all items that are <i>not</i> a vector.
[[] velocity] temperature] acceleration] energy
(b)	Which equations have mistakes in them?
[$\begin{array}{l} \underline{v}=v^{i}\hat{e}^{i}\\ \underline{v}=v^{i}\hat{e}_{i}\\ \underline{M}=M^{ij}\hat{\vartheta}_{i}\otimes\hat{\vartheta}_{k}\\ \underline{T}=T^{ijk}\hat{\vartheta}_{i}\otimes\hat{\vartheta}_{j} \end{array}$
(c)	Which properties does a vector space have to satisfy?
[] Adding two elements of the vector space yields another element of the vector space.] Multiplying an element of the vector space with an element of the field (\mathbb{R} or \mathbb{C}) yields another element of the vector space.] You can divide elements by one another.] There has to be a product that maps two elements of the vector space into the field (\mathbb{R} or \mathbb{C}).
(d)	In the notation of quantum mechanics, which of the following objects is a rank $\binom{0}{2}$ tensor?
[$ \begin{array}{l} \langle \phi \otimes \langle \psi \\ \chi \rangle \otimes \langle \phi \\ \chi \rangle \otimes \lambda \rangle \\ \langle \phi \chi \rangle \end{array} $
(e)	How many independent components does a rank $\binom{2}{3}$ tensor have in n dimensions?
[] $5n$] $n^2 + n^3$] $(5n)!$] n^5

2 Tensor algebra

Let \underline{v} be a vector, $\underline{\omega}$ be a covector, \underline{M} be a $\binom{0}{2}$ tensor, \underline{F} be a $\binom{2}{0}$ tensor, and \underline{T} be a $\binom{2}{2}$ tensor. The basis is called \hat{e}_i and the cobasis is called $\hat{\vartheta}^i$, and we work in n dimensions.

(a) Expand \underline{v} , $\underline{\omega}$, \underline{M} , \underline{F} , and \underline{T} in this basis.

(b) Why is $\underline{M} + \underline{F}$ not a tensor?

(c) In the lecture we learned how to use tensor contraction to create scalar quantities. Write down 3 such scalar quantities of your choice involving the symbols \underline{v} , $\underline{\omega}$, \underline{M} , \underline{F} , and \underline{T} and give the resulting expression in components. (Example: $\underline{M}(\underline{v},\underline{v}) = M_{ij}v^iv^j$.)