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4 Noether’s theorem

Emmy Noether’s famous theorem [1] lies at the foundations of gauge theory because it relates continuous

global symmetries to conservation laws for matter currents. In these notes we explore the field-theoretical

version of Noether’s theorem.

4.1 Statement

Consider the action S for a collection of fields φA(x) (where A is an abstract index that can be used to

treat multiple fields at once, and M is Minkowski space):

S =

∫
M

d4xL (φA, ∂µφ
A, xµ) . (1)

Suppose that this action is invariant under a global, continuous symmetry transformation

xµ → x′µ = xµ + δxµ , φA(x)→ φ′A(x′) = φA(x) + δφA(x) , (2)

where δxµ is an arbitrary shift in the coordinates, and δφA is the total change in the field φA resulting

from that shift in the coordinates as well as a dedicated transformation of the fields themselves,

δφA = δ̄φA + Lδxφ
A . (3)

Let us call “δφA” the total field variation, and let us call “δ̄φA” the same-point field variation. It can be

defined via

φ′A(x) = φA(x) + δ̄φA(x) , (4)

where the main difference to Eq. (2) is that the field φ is evaluated at the old position x and not the

shifted position x′. Also, in the above, Lvφ
A denotes the Lie derivative of φA in the direction of the

deformation δxµ. It will become clear further below how this expression is evaluated. Noether’s theorem

then states that the following current is conserved on-shell:

jµ =
∂L

∂(∂µφA)
δ̄φA + L δxµ . (5)
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By on-shell we mean that the equations of motions for φA are assumed to be satisfied, that is,

∂L

∂φA
− ∂µ

∂L

∂(∂µφA)
= 0 . (6)

These equations of motion are also sometimes referred to as Euler–Lagrange equations for φA since they

are derived from the variational principle as applied to the action S.

4.2 Derivation

Let us now prove Noether’s theorem. First off, we know that the change in the action has to vanish

by construction (since we are applying a symmetry transformation). Let us calculate this change in the

action explicitly, for an infinitesimal transformation:

0 = δS = S[φ′A(x′)]− S[φ(x)] (7)

=

∫
M′

d4x′L
(
φ′A(x′), ∂µ′φ

′A(x′), x′
)
−
∫
M

d4xL
(
φA(x), ∂µφ

A(x), x
)

=

∫
M

d4x
{[

L
(
φ′A(x), ∂µφ

′A(x), x
)
−L

(
φA(x), ∂µφ

A(x), x
) ]

+ ∂µ

[
L
(
φA(x), ∂µφ

A(x), x
)
δxµ
]}

=

∫
M

d4x
{[ ∂L

∂φA
δ̄φA +

∂L

∂(∂µφA)
δ̄∂µφ

A

]
+ ∂µ

[
L δxµ

]}
=

∫
M

d4x
{[ ∂L

∂φA
− ∂µ

∂L

∂(∂µφA)

]
︸ ︷︷ ︸

?
=0 on-shell

δ̄φA + ∂µ

[
L δxµ +

∂L

∂(∂µφA)
δ̄φA

]}

?
=

∫
M

d4x∂µ

[
L δxµ +

∂L

∂(∂µφA)
δ̄φA

]
.

This deserves some explanation. From the second to the third line, we expressed the integral over M ′ in

terms of an integral over M using the following identity:∫
M′

d4x′f(x′) =

∫
M

d4x

∣∣∣∣∂x′µ∂xν

∣∣∣∣ f(x) =

∫
M

d4x
[
f(x) + ∂µ (f(x)δxµ)

]
. (8)

Then, in the third line all expressions only depend on x and not on x′, so that we can pull everything

under one integral. Leaving the total derivative in the last term alone, we from the third to the fourth

line we expressed the difference of the two Lagrange densities in terms of the same-point field variations

δ̄φA. We also now omit all arguments of the Lagrange densities L since they now all depend on the

original fields φA without any modifications. In the last step we integrate by parts and use the fact that
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the derivative ∂µ and the same-point field variations commute,

δ̄∂µφ
A = ∂µδ̄φ

A . (9)

The above formula, where δ̄ is replaced by just δ is not correct. After performing the integration by parts

we add the total derivative to the second term, and realize that the underbraced term vanishes on-shell,

which concludes the derivation:

The entire expression has to vanish. Since the equal signs hold for any region M and thus cannot depend

on the choice of it, we conclude that the divergence of the current jµ has to vanish identically.

4.3 Some examples

This derivation was a bit formal, so let us get our hands dirty by calculating some conserved currents

for some well-known examples. We will both treat symmetry transformations in the field φA as well as

coordinate symmetries in xµ.

4.3.1 Electric current of the complex scalar field

As we know quite well by now, the complex scalar field has the Lagrangian density

L = −(∂µφ)(∂µφ∗)− V (|φ|2) , (10)

where the potential term can be any function of |φ|2. This Lagrange density is invariant under the global

continuous U(1) transformation

φ′(x) = eiαφ(x) , φ∗′(x) = e−iαφ∗(x) , α ∈ R = const . (11)

We should remember now that this is a complex field, hence our abstract index A from above can be used

to label φ and its complex conjugate φ∗ such that

φ1 := φ , φ2 := φ∗ . (12)

The infinitesimal version of the U(1) symmetry, expressed in the above language, takes the form

δ̄φ1 = δφ1 = iαφ , δ̄φ2 = δφ2 = −iαφ∗ , δxµ = 0 . (13)
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(Remember that the superscript “2” is not a power two, but rather the index A = 2.) We can now apply

Noether’s theorem and find for the conserved current

jµ =
∂L

∂(∂µφA)
δ̄φA =

∂L

∂(∂µφ1)
δ̄φ1 +

∂L

∂(∂µφ2)
δ̄φ2 = −∂µφ∗iαφ− ∂µφ(−i)αφ∗ = iα (φ∗∂µ − φ∂µφ∗) .

(14)

Up to the leading constant factor of α, this precisely corresponds to the electric current we found in the

previous meetings. Of course the physical current should not depend on the parameter arbitrary α, and

hence we define the physical current to be (including a conventional minus sign)

jµphys. := − djµ

dα

∣∣∣∣
α=0

= i (φ∂µφ∗ − φ∗∂µφ) . (15)

The minus sign is just cosmetics, but we should remember that for each continuous parameter we obtain

one conserved current.

4.3.2 Electric current of the Dirac fermion

The Dirac Lagrange density reads

L = iψ (γµ∂µ +m)ψ . (16)

Again, this Lagrange density is invariant under the global continuous U(1) transformation

ψ′(x) = eiαψ(x) , ψ
′
(x) = e−iαψ(x) , α ∈ R = const . (17)

We should remember now that this is a complex field, hence our abstract index A from above can be used

to label ψ and its adjoint spinor ψ := ψ†γ0 such that

φ1 := ψ , φ2 := ψ . (18)

The infinitesimal version of the U(1) symmetry can be expressed as

δ̄φ1 = δφ1 = iαψ , δ̄φ2 = δφ2 = −iαψ , δxµ = 0 . (19)

Then, the Noether current then is

jµ =
∂L

∂(∂µφ1)
δ̄φ1 +

∂L

∂(∂µφ2)
δ̄φ2 = iψγµiαψ + 0 = −αψγµψ , (20)
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which again corresponds to the expressions we found earlier, up to the leading factor of −α. The physical

current, by definition, strips away this extra factor, and one obtains the well-known expression

jµphys. = ψγµψ . (21)

4.3.3 Energy-momentum of a real scalar field

Let us now forget about symmetry transformations on the fields themselves. What is left? Only empty

spacetime itself. If we are talking about a relativistic field theory, it is usually formulated on Minkowski

space M: empty, three-dimensional space endowed with an additional time direction. This space is

translationally invariant in any direction. This translation transformation corresponds to

δxµ = εµ , (22)

where we should think of εµ as an infinitesimal, constant vector with four components. Let us consider,

for simplicity, a real scalar field φ(x) with the Lagrange density

L = −1

2
(∂µφ)(∂µφ)− V (φ) , (23)

where the potential depends on just φ and not x explicitly. Note that the global U(1) symmetry trans-

formation (11) is not a symmetry of the scalar Lagrange density (23). Accordingly we will set

0 = δφ = δ̄φ+ Lδxφ = δ̄φ+ δxµ∂µφ = δ̄φ+ εµ∂µφ ⇔ δ̄φ = −εν∂νφ 6= 0 , (24)

where in the second step we inserted the definition of the Lie derivative, as demanded per Eq. (3). We

can now calculate and find for the Noether current

jµ = L δxµ +
∂L

∂(∂µφ)
δ̄φ = L εµ + (∂µφ)εν(∂νφ) = [L δµν + (∂µφ)(∂νφ)] εν =: Tµνε

ν . (25)

In the last equality we inserted a Kronecker delta δµν in order to factor out the four continuous translation

parameters εµ, and we see that in this case we do not obtain just one current, but in fact four currents,

encoded in the energy-momentum tensor Tµν . The physical current (here we do not need the overall

minus sign) is then given by

jµνphys. = +
djµ

dεµ

∣∣∣∣
εµ=0

= L δµν + (∂µφ)(∂νφ) = Tµν . (26)

We see: translational invariance of Minkowski space gives rise to the conservation of energy and momen-

tum. This translational invariance is also sometimes called an isometry of Minkowski space. Symmetries

in the fields are also sometimes referred to as “internal symmetries” whereas symmetries of spacetime

itself, like the translations in the present case, are then called “external symmetries.”
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4.3.4 Angular momentum of a real scalar field

To conclude this set of examples, let us now remember that Minkowski space is also invariant under

Lorentz transformations, whose continuous parts in turn consist of three boosts as well as three spatial

rotations. It is true that spatial reflections can also be considered as Lorentz transformations, but they

are not continuous. And for Noether’s theorem, as we derived at the beginning of this section, we can

only employ continuous transformations.

An infinitesimal Lorentz transformation is described by the following coordinate transformation:

x′µ = xµ + ωµνx
ν , δxµ = ωµνx

ν , ωµν = −ωνµ ∈ R = const. (27)

At first glance it looks like there is something fishy going on: the coordinate shift δxµ depends on xµ, so

how can this be a global transformation? This is fine, as it turns out. The fact that we are talking about

a global transformation is encoded in the fact that the antisymmetric matrix ωµν is constant and does

not depend on xµ. Let us see how this works out.

Remember that during this coordinate transformation we do not change the field itself, δφ = 0. As in the

previous example this implies a non-zero same-point variation of the field,

0 = δφ = δ̄φ+ Lδxφ = δ̄φ+ δxµ∂µφ = δ̄φ+ ωµνx
ν∂µφ ⇔ δ̄φ = −ωνσxν∂σφ 6= 0 . (28)

We now switch on the Noether machine and calculate

jµ = L δxµ +
∂L

∂(∂µφ)
δ̄φ = L ωµνx

ν + (∂µφ)ωνσx
σ(∂νφ) =

[
L xσδ

µ
ρ + (∂µφ)xσ(∂ρφ)

]
ωρσ =: Jµρσω

ρσ .

(29)

Again, we factored out the parameters ωρσ. We can now calculate the physical current by differentiating

with respect to these parameters (again, we do not need the minus sign). However, we should remember

that these parameters are combined into an antisymmetric matrix, ωρσ = −ωσρ. This means that after

differentiating with respect to ωρσ the result has to be antisymmetric under the exchange of the indices

ρ↔ σ. We find

jµρσphys. =
djµ

dωρσ

∣∣∣∣
ωρσ=0

=
d

dωρσ

(
L x[βδ

µ
α] + (∂µφ)x[β∂α]φ

)
ωαβ

∣∣∣
ωρσ=0

= L x[σδ
µ
ρ] + (∂µφ)x[σ∂ρ]φ (30)

= Tµ[ρxσ] = Jµρσ . (31)

In the above, we have used the “bracket notation” for antisymmetrization: x[µyν] = 1
2 (xµyν − xνyµ). The

result is interesting: the physical current is a tensor of rank 3. This was somewhat expected:

• electric current jµ: one current, one gauge parameter α

• energy-momentum current Tµν : four currents, four gauge parameters εµ
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• angular momentum current Jµρσ: six currents, six gauge parameters ωµν = −ωνµ

Also, and that is perhaps the most surprising result, the angular momentum of the scalar field Jµρσ can

be expressed in terms of its own energy-momentum tensor Tµν ! What does that mean?

In these meetings we are talking about classical physics, but we should not forget that a real scalar field is

the simplest possible model of matter, with no internal structure. In particular, the quantized version of

it has spin zero. Since spin is related to angular momentum, we can think of the above result as follows:

because the total angular momentum of the scalar field is just given by the antisymmetric product of Tµν

and xρ (looks like ~J = ~r × ~p, doesn’t it?) without any additional ingredients, the field φ has no internal

angular momentum (i.e. no spin). Another way to put this: the angular momentum of the real scalar

field φ is specified entirely by its orbital angular momentum, it has no intrinsic contributions.

In the case of fermions, which we may treat later in more detail, this will no longer be the case: its angular

momentum is the sum of orbital angular momentum (similar to the scalar case) as well as an intrinsic

contribution, which can be attributed to the spin-1/2 nature of fermions.
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