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Abstract

Gravitational waves are the emergent medium to probe our understanding of gravity, with increas-

ing relevance in the age of gravitational wave astronomy. Current experiments (LIGO/Virgo/Kagra)

are sensitive to gravitational waves stemming from the collision of stellar-mass black holes of

roughly comparable masses. While an excellent probe for gravity in the strong-field regime, an-

alytical treatments are extremely difficult to perform and in practice one resorts to numerical

relativity. However, future experiments, like the Laser Interferometer Space Antenna (LISA), will

be sensitive to the gravitational waves stemming from the collision of small, stellar mass black

holes with giant, supermassive black holes. In such “extreme-mass ratio inspirals” (for short: EM-

RIs) it is possible to perform perturbative computations, since the large mass ratio allows one

to approximate the small orbiting black hole as a point particle. The goal of this course is to

understand how a fundamental model of gravity (say, general relativity) can be used to estimate

the shape of the gravitational waves stemming from such an EMRI, using perturbative and largely

analytical techniques. To that end, we will develop a simple Mathematica sheet that will gener-

ate such a gravitational wave pattern (to zeroth order, with necessary simplifications in resolution

and accuracy). In a second step, we will consider a modified version of gravity, and explore how

this qualitatively changes the gravitational wave pattern.
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Chapter 0

Overview and motivation

We live in a fascinating time: gravitational waves, measured by terrestrial experiments, have

indirectly confirmed the existence of astrophysical black holes. Moreover, interferometric imaging

techniques have managed to capture snapshots of supermassive black holes. Due to their strong

gravitational fields, black holes present a unique opportunity to put general relativity to the test.

Is it really the “only game in town” or can there be subtle deviations?

The development of strong gravity tests is often performed with tools of numerical relativity,

capable of describing the dynamics of neutron stars or the time-resolved merger of black holes.

Analytical methods have not (yet?) been that successful. Unfortunately, gravitational waves in the

100Hz-range, as they are detectable by terrestrial experiments, are generated primarily by merging

stellar-size black holes—the regime of numerical relativity. Lower-frequency gravitational waves

in the millihertz domain, will be detectable by the Laser Interferometer Space Antenna (LISA)

experiment. Fortunately for us, a predominant source for such gravitational radiation stems from

the slow, often week-long inspiral of small, stellar-mass black holes, into a central, supermassive

primary black hole. The upshot: the large separation in masses (often, the smaller black hole is

100-10,000 times less massive) allows for a perturbative description of that process. The goal of

this lecture is simple: let us try to understand how we can perturbatively describe such an extreme

mass ratio inspiral (EMRI) event, and how we can extract the gravitational wave signatures.

This research area has been developed for a long time, and we will not be able to perform cutting

edge calculations to the best known precision. However, with relative ease, we will be able to

extract leading order effects for non-rotating black holes. (Realistically, astrophysical black holes

are always rotating; and while this does not immediately present an analytic intractability, it

would significantly increase the complexity of equations.) For this reason we will focus on an

approach described neatly in Babak et al. [1], adapted to the non-rotating case. I encourage you
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to have a look at this article, since it contains an excellent introduction into the topic and a very

clear description of all steps involved. If you are interested in details of hands-on contemporary

calculations, I refer you to Alexandra Hanselman’s S.B. thesis [2] that covers many technical

aspects from a self-contained, introductory perspective.

0.1 Main idea: how to generate EMRI waveforms

Before we delve into all the details (and may get lost in some formulae), I wanted to briefly

describe the main steps necessary to generate gravitational wave waveforms for EMRIs. Here is a

step-by-step list:

(i) Obtain the bound orbits.

We consider a test particle in a bound orbit around a black hole, and we find the equations

that govern its motion. Since we are interested in observation of that motion, we rephrase

everything in terms of the time coordinate t of a distant observer.

(ii) Calculate the gravitational wave radiation.

Using an approximation, we estimate the energy and angular momentum radiated away via

gravitational waves. We will utilize linearized gravity for this, and for slow-moving sources

it is moreover sufficient to utilize the quadrupole formula instead of the Press formula.

(iii) Obtain inspiral orbit.

In an adiabatic approximation, we elevate the orbiting particle’s energy and angular momen-

tum to time-dependent functions, taking into consideration the loss of energy and angular

momentum due to gravitational waves. This decrease leads to a decaying orbit.

(iv) Compute gravitational wave signal.

With the inspiral orbit available, we consider a motion of a particle in flat spacetime following

this curve, and extract the gravitational wave signal from this, again utilizing linearized

gravity.

(v) Rinse an repeat.

We can now repeat this for different initial particle parameters, and generalize these methods

to other geometries. Moreover, we can refine the analysis by taking into account subleading

effects, such as black hole rotation, spin-curvature coupling, self forces, and more.

And that’s it. Conceptually, it is surprisingly simple, but keep in mind that this is largely due to

the fact that the large mass ratio allows us to make these simplifications. Eventually, when the

orbiting particle gets too close to the primary black hole, our approximations break down and we

would have to resort to numerical relativity to properly capture the black hole merger.
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0.2 Organization of this lecture

Since not everybody has the same background in general relativity, I decided to add Chapter 1 that

summarizes the main results relevant for this lecture. Needless to say, it is far from a self-contained

introduction into general relativity (and slightly beyond), but I hope it can serve as a good first

point of reference.

After the introduction, in Chapter 2 we will start talking about the spherically symmetric black

hole solution of general relativity, the so-called Schwarzschild solution. We will discuss its sym-

metries with a particular focus on how we can use them to construct conserved quantities for

particle motion, since that will greatly simplify the discussion of particle orbits. We will use some

Mathematica notebooks (available on the course website) to help us along with computations

and some simple numerics.

With stable particle orbits under control, in Chapter 3 we will next briefly revisit the notion of

linearized gravity, wherein it is rather straightforward to describe gravitational waves emanating

from isolated gravitational systems (such as the black hole-black hole binary system formed from

a supermassive black hole and a stellar mass black hole that we will discuss later). Here we will

again be brief, but I will make sure that the main results (linearized field equation and quadrupole

formula) are derived rigorously enough that any interested students can fill in the gaps at home.

(If not, please contact me via email or send me an anonymous question (password: EMRI), and I

will be happy to help as best as I can.

In the next step, in Chapter 4, we will combine the results: using the quadrupole formula, we

will estimate how much energy and angular momentum is radiated away from the system, and

compute its leading order effect on the particle orbit. Under influence of this backreaction, the

orbit will then become an inspiral orbit. Taking that as an input, using the formulas from the

previous chapter we will finally see an EMRI waveform. Again, tailored Mathematica notebooks

will help us with that.

Last, one of the goals of this lecture is to motivate how we can use EMRI waveforms to search for

new physics. To see how this is, in principle, possible, we will consider a spherically symmetric

black hole that carries a small dark charge, formally equivalent to the Reissner–Nordström black

hole. After changing the metric wherever necessary, we will track how this extra term changes

both the inspiral as well as the EMRI waveform.

Ultimately, I hope that this lecture will be interesting not just for gravitational physicists, but also

get the general idea across to a broader audience: gravitational waves have come to stay, and it is

time we learn how to use them to help us making discoveries in fundamental physics.
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Chapter 1

Basics of general relativity and beyond

These lecture notes are by no means supposed to replace a proper introduction into the basic

aspects of general relativity, but in this chapter we will review a few basic concepts that are

most helpful for the topic of extreme mass ratio inspirals and their gravitational wave signature.

Those topics include the metric, the notion of symmetries of metrics (called isometries), taking

derivatives in a coordinate-invariant manner (via the covariant derivative), the motion of test

particles in spacetime geometries on geodesics, as well as conserved quantities for such particle

motion in the presence of symmetries, which corresponds to a manifestation of Noether’s theorem

in the context of gravity.

Our conventions are (−,+,+,+) metric signature, and we will use units where the speed of light

is set to unity, c = 1. This means that GM , where M is a mass, has dimensions of length.

1.1 The metric

Before we talk about the metric, let us fix some coordinates. We denote them by xµ. In the context

of these lecture notes, we will almost exclusively work in spherical coordinates, xµ = {t, r, θ, ϕ},
but the whole point of general relativity is that it does not matter what coordinates you use—the

final, physical results will not depend on that choice. When we want to evaluate tensor components

(more on that below) we set indices to coordinate names, for example µ = t or µ = r. (In some

literature, we instead find µ = 0 or µ = 1, that is, numerical notation, and then we have to

remember that x0 = t and x1 = r and so on. By using the coordinate names for the components

we can avoid that sort of confusion.)

In general, a tensor is an object with p upper indices, and q lower indices that transforms homoge-

neously under coordinate transformations. We say that such a tensor T µ1...µpν1...νq is of rank (p, q).
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The spacetime metric, an important tensor for us in this lecture, is a rank-(0,2) tensor (meaning

that it has two lower indices) that we will denote by gµν , and it is the fundamental variable in

general relativity. The inverse metric is denoted by gµν and it is related to the metric via

gµαgαν = δµν , (1)

where δµν is the Kronecker symbol (equal to 1 if µ = ν and 0 otherwise). In practice, we often

denote the metric indirectly via the so-called line element,

ds2 = gµνdx
µdxν . (2)

This has the advantage that we can read off both the metric components and the coordinates being

used. For example, the line element of flat spacetime expressed in spherical coordinates is

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θ dϕ2 , (3)

and we can read off

gtt = −1 , grr = 1 , gθθ = r2 , gϕϕ = r2 sin2 θ . (4)

The components of the inverse metric are then obtained simply by matrix inversion, which is

particularly simple for this diagonal metric:

gtt = −1 , grr = 1 , gθθ =
1

r2
, gϕϕ =

1

r2 sin2 θ
. (5)

Sometimes we also find the following notation for the inverse line element in the literature:

∂2
s = gµν∂µ∂ν . (6)

where the ∂µ is a shorthand notation for ∂/∂xµ. In the example case from above, we have the

inverse line element

∂2
s = −∂2

t + ∂2
r +

1

r2
∂2
θ +

1

r2 sin2 θ
∂2
ϕ . (7)

Why did we bother with all of this? One really important task is to successfully switch between

different coordinate systems. Given an old coordinate system xµ and a new coordinate system yν ,

we can compute the Jacobian and the inverse Jacobian,

∂xµ

∂yν
,

∂yµ

∂xν
. (8)
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And a rank-(p, q) tensor transforms “homogeneously,” by which we mean

T µ1...µpν1...νq →
∂yµ1

∂xα1
. . .

∂yµp

∂xαp

∂xβ1

∂yν1
. . .

∂xβq

∂yνq
Tα1...αp

β1...βq . (9)

That’s a lot of indices! Thankfully, we almost never have to do these types of manipulations.

For example, in the case of the metric, while you are of course free to use the above formula for

transformations, it is easier to just use the expression for ds2 and apply the chain rule, and then

read off the new components. For example, let us switch from spherical coordinates to cylindrical

coordinates yµ = {t, z, ρ, ϕ}, with the identifications ρ = r sin θ and z = r cos θ, we find

dρ = sin θdr + r cos θdθ , dz = cos θdr − r sin θdθ , (10)

or, equivalently,

dr = cos θdz + sin θdρ , dθ =
1

r
(cos θdρ− sin θdz) . (11)

We can now insert this directly into our metric,

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2 , (12)

and after utilizing sin2 θ + cos2 θ = 1 we arrive at

ds2 = −dt2 + dz2 + dρ2 + ρ2dϕ2 . (13)

Immediately we can read off, for example, that gρρ = 1 and that now gϕϕ = ρ2. I find this

method of coordinate-transforming a metric much easier than utilizing the more cumbersome (but

equivalent) Jacobian method of Eq. (9).

Another important object are vector fields. We write them in a coordinate-invariant way as

V = V µ∂µ . (14)

Here, ∂µ is the coordinate basis, and it makes an appearance similar to the relation for the inverse

metric gµν in Eq. (7). This notation is a bit confusing if you are seeing it for the first time, but it is

really nice since it allows us to transform between coordinates very easily. Say we have the vector

field V = ∂r (that is, a unit vector in the radial direction) and we again transform to cylindrical
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coordinates. Here is how we do it (hint, hint: chain rule):

V =
∂

∂r
=
∂z

∂r

∂

∂z
+
∂ρ

∂r

∂

∂ρ
= cos θ ∂z + sin θ ∂ρ

=
z

r
∂z +

ρ

r
∂ρ =

z√
z2 + ρ2

∂z +
ρ√

z2 + ρ2
∂ρ .

(15)

We see these kind of transformations all the time, and I encourage you to do an example yourself.

If you take the vector U = ∂θ, for example, how does it look like in cylindrical or Cartesian

coordinates? [Do it! , ]

1.2 Isometries

The metric is the main protagonist in general relativity. And, already at this point, we can

introduce concepts that will become very useful: Killing vectors, Lie derivatives, and isometries.

Note that the covariant derivative, which we will talk about in the next section, is not needed

for any of this discussion. Loosely speaking, an isometry of the metric means that there exists

a coordinate direction in which the metric does not change. Let us parametrize this coordinate

direction by a vector field ξµ. Then, the precise statement of an isometry of the metric in the

direction of that vector field is

Lξgµν = 0 . (16)

We say: the Lie derivative of the metric vanishes along the vector field ξ. Here, the Lie derivative

L is a type of derivative that can be defined for any tensors—all you need is a vector field ξµ along

which you differentiate. For a (1,1)-tensor T µν the Lie derivative is defined as

LξT µν = ξα(∂αT
µ
ν)− (∂αξ

µ)Tαν + (∂νξ
α)T µα . (17)

Importantly, the Lie derivative of a tensor is also a tensor. The first term is always there; the

second term, with a minus sign, takes care of the upper index; and the third term, with the plus

sign, takes care of the lower index. If you want to differentiate an object with more than one

upper index or lower index, then more of these terms have to be added (one for each index). For

example, for the metric, which is a (0,2)-tensor, we write

Lξgµν = ξα(∂αgµν) + (∂µξ
α)gαν + (∂νξ

α)gµα . (18)
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To understand why a vanishing Lie derivative can be interpreted as an isometry, imagine for now

that the metric does not depend on a certain coordinate z. Then we can define the vector field

ξµ = δµz , (19)

which is zero in all directions except for in the z-direction. Inserting this into Eq. (18) and setting

it to zero we find the relation

Lξgµν =
∂

∂z
gµν = 0 , (20)

which literally means that the metric does not depend on the coordinate z. The interpretation is

not always as simple (as we will see when we talk about the rotational invariance of a spherically

symmetric metric futher below in Sec. 2.1), but it is a good example to keep in mind when we get

lost in mathematical details.

One last thing: The Lie derivative of a vector Aµ along a vector field Bµ has a special interpretation.

Let us calculate it and see:

LBAµ = Bα(∂αA
µ)− (∂αB

µ)Aα (21)

We can rearrange the terms a bit to emphasize a structure:

LBAµ = (Bα∂α)Aµ − (Aα∂α)Bµ . (22)

Do you see it? Recalling Eq. (14), it looks like the difference between “vector B acting on A” and

“vector A acting on B,” doesn’t it? Therefore it is antisymmetric under the exchange of A and B.

This structure is so common that we give it a special symbol and name. It is the commutator of

two vector fields:

[A,B]µ ≡ LABµ = (Aα∂α)Bµ − (Bα∂α)Aµ (23)

Why is this equation at the end of the section of isometries? If you have more than one Killing

vector, it is often helpful to calculate the commutator between Killing vectors, to determine their

algebra. This helps to understand the underlying symmetry group. Sure, sometimes it is obvious

if you are in the right coordinate system. But remember that coordinates do not mean anything,

and if you are in a wrong coordinate system, something that is entirely obvious in one coordinate

system may not be obvious at all in the one you are currently using. Commutation relations,

however, are coordinate independent, and hence they are your friend whenever you have a bunch

of Killing vectors you want to understand better. And to drive home that point, we will do that
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very thing when we talk about spherical symmetry in Sec. 2.1.

1.3 The connection and the covariant derivative

Lie derivatives are nice, but loosely speaking we can only differentiate along vector fields. What if

we want to have a general type of derivative? This is where the covariant derivative comes in.

We use the symbol ∇µ for it, in contrast to the partial derivative ∂µ. The usual problems with

derivatives is that they do not commute with coordinate transformations: they destroy the ho-

mogeneous transformation law (9). For example, while T νρ is a rank-(1,1) tensor, ∂µT
ν
ρ is not a

rank-(1,2) tensor. However, the quantity ∇µT
ν
ρ is a rank-(1,2) tensor, and it is defined as

∇µT
ν
ρ ≡ ∂µT

ν
ρ + ΓναµT

α
ρ − ΓαρµT

ν
α . (24)

For tensors of different rank, additional terms need to be added. For each upper index, a positive

term is added (like the second one on the right-hand side), and for each lower index, a negative

term is added (like the third term on the right-hand side). The new ingredient in the covariant

derivative is the connection Γλµν , which is not a tensor. In order for the above to transform as a

rank-(1,2) tensor, the connection itself has to transform as

Γλµν →
∂yλ

∂xα
∂xβ

∂yµ
∂xγ

∂yν
Γαβγ +

∂xλ

∂yα
∂2xα

∂yµ∂yν
. (25)

Note that this transformation law is inhomogeneous! If you want to learn more about this concept,

try to derive the above formula. What is remarkable is that we have not even talked about what

the connection is—all that is required is the inhomogeneous transformation law, and that’s it.

Part of the reason is that a connection is not necessarily unique. We need to impose conditions

on it (or on the covariant derivative) to learn more about it, and to constrain its form a bit more.

Since we are working in a setting with a spacetime metric, a somewhat natural choice is to demand

that the covariant derivative of the metric vanishes,

0 = ∇µgνρ = ∂µgνρ − Γανµgαρ − Γαρµgνα . (26)

Taking the combination ∇µgνρ +∇ρgµν −∇νgρµ = 0 and defining the objects

Γ̃λµν ≡
1

2
gλα (∂µgαν + ∂νgαµ − ∂αgµν) , (27)

T µν
λ ≡ Γλµν − Γλνµ , (28)

Kλ
µν =

1

2

(
T µ

λ
ν + T ν

λ
µ + T µν

λ
)
, (29)
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the connection takes the simple form

Γλµν = Γ̃λµν +Kλ
µν . (30)

Here, Γ̃λµν is called the the Levi-Civita connection (or, less formally and for historical reasons,

Christoffel symbols), and Kλ
µν is called the contortion tensor, and T µν

λ is the torsion tensor. In

general relativity, this tensor is assumed to be identically zero, and there the connection is identical

to the Levi-Civita connection that is derived only from the metric.

Hence, if the connection is symmetric, the torsion tensor is zero. Note, however, that the converse

is not true! Torsion enters the symmetric part of the connection as follows:

Γλ(µν) ≡
1

2

(
Γλµν + Γλνµ

)
= Γ̃λµν +

1

2

(
T µ

λ
ν + T ν

λ
µ

)
. (31)

While the contortion tensor Kλ
µν is truly a tensor, the Levi-Civita connection Γ̃λµν transforms

inhomogeneously,

Γ̃λµν →
∂yλ

∂xα
∂xβ

∂yµ
∂xγ

∂yν
Γ̃αβγ +

∂yλ

∂xα
∂2xα

∂yµ∂yν
. (32)

For these lecture notes, we will also introduce a notation for the Levi-Civita covariant derivative,

∇̃µT
ν
ρ ≡ ∂µT

ν
ρ + Γ̃ναµT

α
ρ − Γ̃αρµT

ν
α . (33)

Why did we discuss all that torsion stuff? While the metricity condition can be rather easily

motivated on physical grounds, the vanishing-torsion condition of general relativity has less rigorous

physical foundations. In fact, in gauge approaches to gravitation it is assumed to be non-vanishing.

1.4 The curvature tensor

Spacetime curvature can be defined as the commutator of covariant derivatives,

[∇µ,∇ν ]V
ρ = Rµν

ρ
αV

α + T µν
α∇αV

ρ . (34)

Performing this computation explicitly does not take too long (it’s 5-6 lines) [Do it! , ] and we

find the following definition for the curvature tensor Rµν
ρ
σ,

Rµν
ρ
σ ≡ ∂µΓρσν − ∂νΓρσµ + ΓραµΓασν − ΓρανΓ

α
σµ . (35)
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Contracting various indices of the curvature tensor with the metric, we can then construct the

Ricci tensors Rµν and the Ricci scalar R via

Rµν ≡ Rαµ
α
ν , R ≡ gαβRαβ . (36)

Note that in general Rµν 6= Rνµ, that is, the Ricci tensor in presence of torsion is asymmetric. It

is also useful to introduce the rank-(0,4) tensor Rµνρσ = gραRµν
α
σ; this tensor has the symmetries

Rµνρσ = −Rνµρσ , Rµνρσ = −Rµνσσ , R[µνρσ] = 0 . (37)

Note that in general Rµνρσ 6= Rρσµν (incidentally, this is the reason that the Ricci tensor in presence

of torsion is asymmetric). Moving on to the torsion-free covariant derivative, we may similarly

define the commutator

[∇̃µ, ∇̃ν ]V
ρ = R̃µν

ρ
αV

α , (38)

where now of course

R̃µν
ρ
σ ≡ ∂µΓ̃ρσν − ∂νΓ̃ρσµ + Γ̃ραµΓ̃ασν − Γ̃ρανΓ̃

α
σµ . (39)

This tensor can also be used to construct a Ricci tensor R̃µν and Ricci scalar R̃ in a similar fashion,

R̃µν ≡ R̃αµ
α
ν , R̃ ≡ gαβR̃αβ . (40)

Now we finally have R̃µν = R̃νµ. This is inherited from the tensor R̃µνρσ = gραR̃µν
α
σ, which has

the enhanced symmetries

R̃µνρσ = −R̃νµρσ , R̃µνρσ = −R̃µνσσ , R̃µνρσ = R̃ρσµν , R̃µ[νρσ] = 0 . (41)

The third relation, sometimes called the “pair-commutation symmetry,” guarantees that the in-

duces Ricci tensors is symmetric. This is exactly what we encounter in general relativity, where

torsion is set to zero.

1.5 The field equations of general relativity

There are many ways to derive the field equations of general relativity. Without going into details

of variational principles in curved spacetime, a rather straightforward way to arrive at the field

equations goes as follows.
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1. In flat spacetime, energy-momentum is conserved, ∂µT µν = 0. In presence of curved space-

time, we hence expect ∇̃µT µν = 0.

2. If energy-momentum is to cause spacetime curvature, the only thing we can write down that

involves the spacetime metric only up to second derivatives in a coordinate-invariant way is

aR̃µν + bR̃gµν + c gµν = d T µν . (42)

3. We now impose that ∇̃µT µν = 0 still holds. This implies that b = −a/2. We can now absorb

a into c and d and find the field equations of general relativity,

R̃µν −
1

2
R̃gµν + Λgµν = 8πGT µν . (43)

Here, we inserted 8πG as the correct constant of proportionality, which can be derived in the

weak-field limit via the Poisson equation, and we called c/a = Λ. Black hole solutions are vacuum

solutions, and hence T µν = 0 and Λ = 0. Taking the trace of (43) gives R̃ = 0 and for this reason

the vacuum field equations are equivalent to

R̃µν = 0 . (44)

The constant Λ is called the cosmological constant, since in cosmology it gives rise to the expansion

(or contraction) of the universe. In this lecture we are concerned with so-called asymptotically flat

spacetimes and for this reason we set Λ = 0.

When reading textbooks on general relativity, we never see so many tildes. This is because I

included the notion of torsion in this first chapter (and will keep doing so until the end of this

chapter) for illustrative purposes. I think it is always helpful to see which results are robust across

a whole range of gravitational theories, and which ones are specific to, say, general relativity.

All that is to say, if you read a general relativity text and you find the field equations listed as

Rµν − 1
2
Rgµν = 8πGT µν , it coincides with what we mean by Eq. (43).

1.6 Killing equation

The Killing equation is simply the statement of an isometry, Lξgµν = 0. Given a metric gµν , vector

fields ξµ solving this equation are called Killing vectors. From Eq. (18) we already know that it
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takes the form

0 = Lξgµν = ξα(∂αgµν) + (∂µξ
α)gαν + (∂νξ

α)gµα . (45)

However, this is not the usual form we find for it in the literature. Recalling the definition of the

covariant derivative, we can substitute

∂αgµν = ∇αgµν + Γβµαgβν + Γβναgµβ , (46)

∂µξ
α = ∇µξ

α − Γαβµξ
β , (47)

∂νξ
α = ∇νξ

α − Γαβνξ
β . (48)

The Killing equation, after reshuffling and remembering ∇αgµν = 0 (because of the metricity

condition) and Γλµν − Γλνµ = T µν
λ (because in general, our connection has torsion), becomes

0 = Lξgµν = ∇µξν +∇νξµ + (T µ
α
ν + T ν

α
µ)ξα = ∇̃µξν + ∇̃νξµ . (49)

The last expression is what we usually see in textbooks on general relativity (since therein, torsion

vanishes), and it is also what we will compute in these lecture notes. To actually find Killing

vectors it can be easier to work with the initial form of the Killing equation in terms of the Lie

derivative, Eq. (45), but as we will see shortly, it is quite easy to prove that there are conservation

laws for moving particles when we instead make use of the formulation (49).

1.7 Motion of test particles

Everything that has energy generates gravity, which in turn affects the spacetime geometry. This

means that in general it is impossible to divide a gravitational system into separate parts. However,

if a particle moving in such a system is small and its impact on the system is considered negligible,

we may treat it as a test particle. And when we say “particle” we really mean massive and massless

objects, even though in the context of this lecture we will exclusively work with massive particles.

It is useful to define the trajectory of such a particle as a function xµ(τ), where τ is called the

proper time. Then it is possible to compute the particle’s 4-velocity,

uµ ≡ dxµ

dτ
≡ u̇µ . (50)

We will often use the dot to indicate a derivative with respect to proper time. The 4-velocity uµ

is a vector, and we can always find a parametrization that normalizes its length. Massive particles

move on causal, timelike curves (that is, with less than the speed of light) and in our signature
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convention this means that

gµνu
µuν = −1 . (51)

We can also define the particle’s 4-momentum pµ ≡ muµ, where m is the particle’s rest mass.

Then we have

gµνp
µpν = −m2 . (52)

While for extended bodies the relation between 4-velocity and 4-momentum can be more com-

plicated, for particles the difference is solely a rescaling by its mass. For the most part of these

lectures, we will make use of the 4-velocity for simplicity (one less parameter to keep track of).

What we need now is a way to determine the particle’s dynamics. Interestingly, there are several

ways to arrive at an equation of motion for xµ(τ), and within general relativity those all end up

being equivalent. Geodesics are defined as curves that extremize their proper path length. Within

the variational principle, we can consider the action

S[xµ(τ)] =

∫
dτ =

∫
dτ
√
−gµνuµuν . (53)

The variational principle then gives (after ∼ 1 page of algebra) the geodesic equation

duµ

dτ
+ Γ̃µαβ u

αuβ = 0 . (54)

Notice that here only the Levi-Civita connection Γ̃λµν makes an appearance. This is because the

length of a curve is a purely metric concept, and hence only the part of the connection directly

specified by the metric makes an appearance.

However, it is also possible to define a group of curves by requiring that they parallel transport

their own tangent vector. This gives rise to the autoparallel equation

uα∇αu
µ = 0 . (55)

And now, the big question: are those equations equivalent? In general, the answer is no. One
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way to see that is to recast the geodesic equation in terms of covariant derivatives. Expanding the

autoparallel equation explicitly, we find

0 = uα(∂αu
µ) + uαΓµβαu

β =
dxα

dτ

∂uµ

∂xα
+ Γµαβu

αuβ =
duµ

dτ
+ Γµαβu

αuβ , (56)

Where the last equal sign follows simply from the chain rule. We thereby arrive at an alternative

version of the autoparallel equation,

duµ

dτ
+ Γµαβ u

αuβ = 0 . (57)

This looks almost identical to Eq. (54), except that this carries the full connection Γλµν instead

of merely the Levi-Civita part Γ̃λµν . To capture the difference, we can insert Γλµν = Γ̃λµν +Kλ
µν

and find

duµ

dτ
+
(

Γ̃µαβ + Tα
µ
β

)
uαuβ = 0 , (58)

Conversely, we may also impose the torsion-free autoparallel condition uµ∇̃µu
ν = 0. For the

reasons stated above, this implies the geodesic equation directly:

duµ

dτ
+ Γ̃µαβ u

αuβ = 0 . (59)

Okay, so depending on what we stipulate we can have different motion for point particles. This

may sound confusing, but it is really a coincidence that these two notions do coincide in general

relativity. That being said, one may wonder if both equations are compatible with gαβu
αuβ = −1.

Taking the directional derivative of this scalar along the geodesic, one finds

0 = uα∇α

(
gβγu

βuγ
)

= uαgβγ
[
(∇αu

β)uγ + (∇αu
γ)uβ

]
= uβu

α(∇αu
β) (60)

= uβu
α
(
∇̃αu

β +Kβ
γαu

γ
)

= uβu
α∇̃αu

β + uαuβuγKαβγ = uβu
α∇̃αu

β . (61)

What does all of that mean? No matter if we use the geodesic equation (54) or the autoparallel

equation (55), the expression gαβu
αuβ is always constant along the curve. In other words: we have

found our first constant of motion!

And speaking of constants of motion: since we already mentioned Killing vectors, let’s see how

those can give rise to extra conserved quantities along geodesics! Unlike the previous section, we

will consider first the torsion-free case (since this is the case relevant for the following lectures),

but we will briefly mention afterwards what changes when there is non-vanishing torsion.
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Say we have a vector kµ that satisfies the torsion-free Killing equation

∇̃µkν + ∇̃νkµ = 0 . (62)

Next, say that we have a particle that satisfies the geodesic equation which we will write here in

its covariant-derivative form,

uα∇̃αu
µ = 0 . (63)

Then, the quantity Q = gαβu
αkβ is conserved along the geodesic! To prove it, we calculate its

derivative along the curve,

uγ∇̃γQ = uγ∇̃γ(gαβu
αkβ) = kαu

γ(∇̃γu
α) + uγuβ(∇̃γkβ) = 0 +

1

2
uγuβ(∇̃γkβ + ∇̃βkγ) = 0 . (64)

In the last two equalities we made use of the geodesic equation and the Killing equation. Wonderful,

we have a conserved quantity! Does it also work like this in the case of non-vanishing torsion?

Unfortunately, the answer is no. Killing vectors in the presence of torsion do not give rise to

conserved quantities. However, we can define something similar. Consider the equation

∇µkν +∇νkµ = 0 . (65)

This is, most decisively, not a Killing equation. However, it implies that the quantity Q = gαβk
αuβ

is conserved along autoparallels, which are defined by uα∇αu
µ = 0. The steps to prove this are

identical to the prove above, just without the tildes for decoration. To practice these sort of

calculations, you can try to derive it yourself. [Do it! , ]

So where does this leave us? We have seen that in general relativity, massive particles follow

geodesics or autoparallels—they are the same. Moreover, for each Killing vector we can define a

quantity that is conserved under geodesics or autoparallel motion. This will come in handy.

In settings with spacetime torsion, however, geodesics and autoparallels do not coincide. Moreover,

Killing vectors in such settings do not give rise to conserved quantities. For autoparallel motion,

however, we can define something similar to Killing vectors that leads to conserved quantities.

That being said, nobody stops us from taking the geodesic equation as the fundamental particle

equation of motion regardless of whether there is or isn’t torsion. In that case, we can just take a

Killing vector and show that it leads to a conserved quantity under uα∇̃α, that is, under geodesic

motion. What is realized in nature? While most physicists nowadays believe that the geodesic

equation is the correct description, ultimately only Nature will be able to tell us what is realized

in our Universe.
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Chapter 2

Geodesic motion around the

Schwarzschild black hole

While realistic, astrophysical black holes are time-dependent, spinning entities surrounded by

accreting matter and strong electromagnetic fields, muck about black holes can be learned from

a symmetry-enhanced scenario. Assuming axial symmetry around the axis of rotation, as well as

vacuum, leads to the Kerr black hole. Neglecting the black holes’ angular momentum allows one to

focus instead on a static, spherically symmetric configuration. While angular momentum plays an

important role in the astrophysics and gravitational wave properties of black holes, we will neglect

it in these lecture notes for simplicity.

In this Chapter, we will first derive the Schwarzschild metric: an exact, spherically symmetric

vacuum solution of the field equations of general relativity. In fact, the Birkhoff theorem states

that it is the unique solution, labeled merely by the parameter M which denotes the mass of the

black hole. In the limit of M → 0 one recovers flat spacetime of special relativity.

2.1 Spherically symmetric vacuum solution

Let us start with the following parametrization of a static, spherically symmetric metric:

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dθ2 + r2 sin2 θdϕ2 . (66)
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Here we employ spherical coordinates xµ = {t, r, θ, ϕ}, and in what follows we will abbreviate

A(r) ≡ A and B(r) ≡ B for brevity. The metric components and inverse metric components are

gtt = −A , grr =
1

B
, gθθ = r2 , gϕϕ = r2 sin2 θ , (67)

gtt = − 1

A
, grr = B , gθθ =

1

r2
, gϕϕ =

1

r2 sin2 θ
. (68)

The Christoffel symbols are

Γ̃ttr =
A′

2A
, Γ̃rtt =

BA′

2
, Γ̃rrr = − B

′

2B
, Γ̃rθθ = −Br , Γ̃rϕϕ = −Br sin2 θ ,

Γ̃θrθ = Γ̃ϕrϕ =
1

r
, Γ̃θϕϕ = − sin θ cos θ , Γ̃ϕθϕ =

cos θ

sin θ
.

(69)

But why is this a good ansatz to make for what we are after (a static, spherically symmetric vacuum

solution)? By that we don’t mean the specific choice of coordinates, because we can always change

those, but rather the form of the metric. To see why this makes sense, we can check the isometries

of the above metric, and to study the isometries we need to look at the Killing vectors. The Killing

equation takes the form

0 = ∂µkν + ∂νkµ − 2Γ̃αµνkα . (70)

This equation is a tensorial equation with two indices, and you can show that is symmetric in

exchange of µ↔ ν. [Do it! , ] The ten components of this equation are given by the following

combination of indices, (µν = tt, tr, tθ, tϕ, rr, rθ, rϕ, θθ, θϕ, ϕϕ):

0 = gtt∂tk
t − Γ̃rttgrrk

r , (71)

0 = grr∂tk
r + ∂rgttk

t − 2gttΓ̃
t
trk

t , (72)

0 = gθθ∂tk
θ + gtt∂θk

t , (73)

0 = gϕϕ∂tk
ϕ + gtt∂ϕk

t , (74)

0 = ∂rgrrk
r − grrΓ̃rrrkr , (75)

0 = ∂rgθθk
θ + grr∂θk

r − 2gθθΓ̃
θ
rθk

θ , (76)

0 = ∂rgϕϕk
ϕ + grr∂ϕk

r − 2gϕϕΓ̃ϕrϕk
ϕ , (77)

0 = gθθ∂θk
θ − grrΓ̃rθθkr , (78)

0 = ∂θgϕϕk
ϕ + gθθ∂ϕk

θ − 2gϕϕΓ̃ϕθϕk
ϕ , (79)

0 = gϕϕ∂ϕk
ϕ − grrΓ̃rϕϕkr − gθθΓ̃θϕϕkθ . (80)
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Using these equations we can prove that the metric (66) is static, which really just means that

the vector ξ = ∂t is a Killing vector, which can be verified with the above relations upon inserting

ξt = 1 with all other components vanishing. [Do it! , ] The metric is also spherically symmetric,

since it admits the three Killing vectors

ρ1 = ∂ϕ , (81)

ρ2 = sinϕ∂θ + cot θ cosϕ∂ϕ , (82)

ρ3 = − cosϕ∂θ + cot θ sinϕ∂ϕ . (83)

These vectors are spacelike, not orthogonal, but span the SO(3) Lie algebra

[ρA, ρB] = −εABCρC , (84)

with ε123 ≡ 1. This can be shown by using the definition of the vector commutator defined in

Sec. 1.2, and it does not take a long time to work it out (about 10 lines in total) [Do it! , ]

Having convinced ourselves that the ansatz (66) is justified for a spherically symmetric static

geometry, we can now insert this metric into the vacuum field equations of general relativity. In

principle it is straightforward to first compute the Christoffel symbols Γ̃λµν , and from there the

Riemann tensor R̃µ
νρσ and its contractions (Ricci tensor R̃µν and Ricci scalat R̃), but in practice

it can be quite cumbersome to do this by hand, especially when you are just taking a class for a

few days and do not want to get overly invested.

For this reason, it is a good idea to use computer algebra. In appendix A you can hence find a list

of download links to Mathematica worksheets that do these computations for you. Since this

lecture is not focused on computer algebra we will not go into excruciating detail, but from the

worksheet you can get a good idea of how to use it—it does not make use of any library and it

is rather easy to add additional functionality, if necessary, if you have previously been exposed to

Mathematica. At any rate, in these lecture notes we will use the worksheet outputs to arrive at

the components of the relevant tensors and quote their results here.

For the above ansatz, one finds the following expressions:

R̃tt =
4ABA′ − rBA′2 + rAA′B′ + 2rABA′′

4rA
, (85)

R̃rr =
rBA′2 − 4A2B′ − rAA′B′ − 2rABA′′

4rA2B
, (86)

R̃θθ =
2A− 2AB − rBA′ − rAB′

2A
, (87)

R̃ϕϕ = sin2 θR̃θθ . (88)
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The combination r(R̃tt + ABR̃rr) gives AB′ −BA′ = 0, which implies

A

B
= k1 , (89)

where k1 is a constant. We can absorb this constant into a redefinition of the time coordinate

t→ t/
√
k1 and hence are free to set k1 = 1. Substituting this into the θθ-component gives

1− A− rA′ = 0 , (90)

which is solved by

A = 1 +
k2

r
, (91)

where k2 is a constant of dimension length. All equations are now solved. For k2 = 0 we arrive at

flat spacetime, so it is already plausible to assume that k2 ∝ GM , where M is the black hole mass,

since for M → 0 we assume to return to flat spacetime. The Newtonian limit (see in Sec. 2.2) then

fixes the constant of proportionality to a factor of −2 such that k2 = −2GM . The result,

A = B = 1− 2GM

r
, (92)

solves all remaining equations. Calling A(r) = B(r) = f(r) we arrive at the standard form of the

Schwarzschild metric,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dθ2 + r2 sin2 θdϕ2 , f(r) = 1− 2GM

r
. (93)

One can prove that this metric is the unique spherically symmetric and static vacuum solution of

the field equations of general relativity (which is called Birkhoff’s theorem).

2.2 Motion of test particles via the geodesic equation

One might be tempted to start with the Christoffel symbols and write down the equation of motion.

This is possible, since we computed the form of the non-vanishing Christoffel symbols previously.

They are

Γ̃ttr = −Γ̃rrr =
f ′

2f
, Γ̃rtt =

ff ′

2
, Γ̃rθθ = −fr , Γ̃rϕϕ = −fr sin2 θ , (94)
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Γ̃θrθ = Γ̃ϕrϕ =
1

r
, Γ̃θϕϕ = − sin θ cos θ , Γ̃ϕθϕ =

cos θ

sin θ
. (95)

Inserting the function f(r) = 1− 2GM/r one finds explicitly

Γ̃ttr = −Γ̃rrr =
GM

r(r − 2GM)
, Γ̃rtt =

(
1− 2GM

r

)
GM

r2
, (96)

Γ̃rθθ = 2GM − r , Γ̃rϕϕ = (2GM − r) sin2 θ , (97)

Γ̃θrθ = Γ̃ϕrϕ =
1

r
, Γ̃θϕϕ = − sin θ cos θ , Γ̃ϕθϕ =

cos θ

sin θ
. (98)

The geodesic equation is

0 = ẗ+ 2Γ̃ttr ṫṙ , (99)

0 = r̈ + Γ̃rttṫ
2 + Γ̃rrrṙ

2 + Γ̃rθθθ̇
2 + Γ̃rϕϕϕ̇

2 , (100)

0 = θ̈ + 2Γ̃θrθṙθ̇ + Γ̃θϕϕϕ̇
2 , (101)

0 = ϕ̈+ 2Γ̃ϕrϕṙϕ̇+ 2Γ̃ϕθϕθ̇ϕ̇ . (102)

This is an ordinary, second-order partial differential equation, and can be solved numerically rather

easily provided suitable boundary conditions are provided. We can (try to) read off some properties:

� Motion in the equatorial plane (θ = π/2, θ̇ = 0) is allowed.

� If ϕ̇ is constant, the equation for r̈ seems to imply unbound motion, since it contains r̈−ϕ̇2r =

0, solved by r ∼ exp[±constτ ]. But it is not clear if ϕ̇ is a constant or not.

� And, very roughly speaking, for Newtonian radial motion we can assume ẗ ≈ 1 and ṙ2 � 1

(non-relativistic motion) and r � 2GM (Newtonian gravity is valid), as well as θ̇ = ϕ̇ =

0 (radial motion). Under such assumptions, the second equation becomes r̈ = −Γ̃trr ≈
−GM/r2, which is Newton’s law of gravitation in the radial coordinate. This last step is

very helpful in identifying the integration constant k2 of Sec. 2.1.

Of course we can study this equation more on a purely numerical level, but it makes sense to go

beyond that and make use of the conserved quantities we derived earlier. This way, as we will

see shortly, we can reduce the equations of motion to first order and qualitatively discuss bound

particle motion without ever solving differential equations.

2.3 Motion of test particles via the constants of motion

As pointed out, we can do one better. As we may have guessed from the presence of four Killing

vectors, there are four conserved quantities for geodesic motion in the Schwarzschild geometry.
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We can define the following four constants (the minus sign in the first equation is conventional):

E = −gµνuµξν =

(
1− 2GM

r

)
ṫ , (103)

L1 = gµνu
µρν1 = r2 sin2 θ ϕ̇ , (104)

L2 = gµνu
µρν2 = +r2 sinϕ θ̇ + r2 sin θ cos θ cosϕ ϕ̇ , (105)

L3 = gµνu
µρν2 = −r2 cosϕ θ̇ + r2 sin θ cos θ sinϕ ϕ̇ . (106)

The three constants L1, L2, and L3 correspond to the three independently conserved components

of angular momentum. However, as we saw in the previous section, due to spherical symmetry we

may consider equatorial orbits without loss of generality. Alternatively, for any given conserved

angular momentum, we may orient the coordinate system in such a way that its axis corresponds

to θ = 0. Either way, the motion happens in the θ = π/2 plane at θ̇ = 0. This then forces the two

constants L2 and L3 to become trivial, and we finally arrive at a set of two constants of motion,

E =

(
1− 2GM

r

)
ṫ , L ≡ L1 = r2 ϕ̇ , L2 = L3 = 0 . (107)

But recall that gµνp
µpν = −1 is of course also a constant of motion—we will get back to that in

a second, since that is the key to arrive at a simpler equation of motion! For now, though, let us

point out that we work here with the 4-velocity instead of the 4-momentum pµ. This is OK since

for point particles of mass m we have pµ = muµ. It also shows that the physical interpretation

of E is not the energy of the particle, but the energy per rest mass; similarly, L is the angular

momentum per rest mass. Accordingly, E is dimensionless, while L has units of length-squared.

But aside from a rescaling by the rest mass, what are reasonable values for those parameters? A

particle at rest at spatial infinity (r = ∞) has a 4-velocity that is proportional to the timelike

Killing vector, uµ = (1, 0, 0, 0) which implies that ṫ = 1. This, in turn, implies that E = 1 for

such a particle. If its radial velocity is non-vanishing, we still have that −1 = −ṫ2 + ṙ2 at infinity,

which implies that |ṙ| > 0 increases the value of ṫ since ṫ2 = 1 + ṙ2. What this means is that E is

bounded from below by 1 for all particles that come from infinity. This makes sense: Restoring the

mass and the speed of light for a second, we know that the energy of a particle (in flat spacetime!)

has to be at least mc2, and E = 1 is precisely that statement.

Okay, now it is finally time to remember that the normalization condition of the 4-velocity of a
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massive particle is also a conserved quantity. Writing

uµ = (t(τ), r(τ), θ(τ), ϕ(τ)) , (108)

we find explicitly

−1 = gµνu
µuν = −f ṫ2 +

ṙ2

f
+ r2θ̇2 + r2 sin2 θϕ̇2 . (109)

From now on we no longer write t(τ), r(τ), and so on, but omit the τ -dependence for notational

brevity and just write t and r, and so on, with the implicit assumption that these are all functions

of the proper time τ . As a next step, we substitute the constants of motion from Eq. (107) and

find

−1 = −f E
2

f 2
+
ṙ2

f
+ r2θ̇2 + r2 sin2 θ

L2

r4
. (110)

Since the Schwarzschild metric is spherically symmetric, we can set θ = π/2 without loss of

generality; this also follows from the geodesic equation we discussed earlier. Then, collecting some

common factors and rearranging some terms, the above relation becomes

ṙ2 = E2 − Veff(r) , Veff(r) =

(
1− 2GM

r

)(
1 +

L2

r2

)
. (111)

As the name suggests, Veff is called the effective potential since it governs the particle motion.

Since it is the potential for a particle with mass 1 (remember? we normalized everything to the

particle’s rest mass m), the effective potential is a dimensionless quantity. Its shape as a function

of radius r depends solely on the angular momentum parameter L and the black hole mass M .

It may seem a bit odd, but Eq. (111)—together with the definition of E and L via Eq. (107)—is

our equation of motion, and it is all we need to describe particle motion inside the Schwarzschild

geometry (for r > 2GM , that is). Okay, but how do we describe particle motion qualitatively?

2.4 Bound orbits for massive particles

To qualitatively describe the orbits, the only think we need to remember is that the left-hand side

of Eq. (111) is positive. This means that Veff(r) ≤ E2 is strictly required. When we plot this

graphically, given a particle energy E, we see that the allowed regions of motion for the radial

variable r are those where E2 is above the potential line; see also Fig. 1. As it turns out, for very
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large values of E only unbound orbits are possible, whereas other values allow for bound orbits.

For the context of the present lecture, bound orbits are of primary importance. Studying the

effective potential a bit more, it helps to isolate its extrema. We find

V ′eff(r±) = 0 , r± =
L

2GM

(
L±

√
L2 − 12(GM)2

)
, (112)

that is, for L > 2
√

3GM ≈ 3.46GM there exist two extrema; the maximum is at r = r− and the

minimum at r = r+. A bound orbit is possible only if the potential has a maximum (in other

words: there is a potential barrier), since otherwise nothing would stop the particle from falling

beyond r = 2GM and never to return outside of the black hole. Such a maximum exists only if

the angular momentum is not too small (since otherwise the black hole always wins). Intuitively,

this makes sense.

However, a large angular momentum is only a necessary requirement. Another necessary require-

ment is E2 < 1 since otherwise the particle can escape to r →∞. And last, we also need to make

sure that the particle does not plunge into the black hole, hence E2 < Veff(r−). Collecting these

conditions, we find

L > 2
√

3GM , E2 < 1 , E2 < Veff(r−) =
2[4(GM)2 − L(L−

√
L2 − 12(GM)2)]2

L(L−
√
L2 − 12(GM)2)3

. (113)

This last condition is what we are after: given the initial values of E and L we can now check

easily if they correspond to a bound orbit or not.
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Figure 1: Effective potential Veff(r) as a function of dimensionless distance r/(GM) for the
Schwarzschild metric, for different angular momenta L. The dashed line corresponds to the asymp-
totic value of Veff(r →∞). Bound orbits only exist if (i) there is a potential maximum (to create
an inner turning point), (ii) the quantity E2 < 1 (to avoid particles to escape to r =∞), and (iii)
the quantity E2 is less than the potential maximum (to avoid plunging orbits).
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Chapter 3

Gravitational waves: basic notions

The difficulty inherent to general relativity (and modified gravity theories) lies in the non-linearity

of the field equations, making it rather difficult to construct exact solutions. Basically, it is difficult

to define isolated parts of the gravitational system, since everything couples to everything. A

gravitational wave deforms a black hole, which responds by tidal deformation, emitting other

gravitational waves, and so on.

So what can we do? There are many different approaches, including numerical relativity and

systematic perturbation theory. Since in these lectures we care about leading-order effects in

binary systems with a large mass ratio, we will focus on the perturbative approach. What’s more,

we will consider linearized gravity around flat spacetime. This is seemingly unjustified, since the

gravitational field in the vicinity of black holes can become rather large, and gravitational waves

can scatter off of spacetime curvature, but this method still captures the leading-order effects. For

example, the orbital decay in the Hulse–Taylor pulsar (which consists of two neutron stars orbiting

each other at a large distance) can be correctly described, within a few percent, with formulas that

we will derive in this section. The discussion in Sec. 3.2 is partly based on Chs. 17 & 18 of the

excellent book by Hobson et al. [3].

3.1 Lightning review of linearized gravity

To begin with, we split spacetime into that flat background ηµν and a gravitational perturbation

hµν = hνµ that is assumed very small, 2κhµν � 1 , such that

gµν = ηµν + 2κhµν . (114)
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Here, the factor κ =
√

8πG is conventional and inserted so that the field hµν has dimensions of

energy (in units where ~ = c = 1). The field hµν (or, rather, its two massless modes of spin 2)

is called the graviton, when the theory is quantized. Here we will perform classical field theory,

but we can still think of hµν as the gravitational ripples in spacetime (modulo gauge-dependent

expressions—we will get back to that later).

What we can do now is expand everything in terms of κ and only keep leading-order terms. The

theory we then arrive at is called linearized gravity, and we can then use the method of Green

functions and partial differential equations in flat spacetime to compute the gravitational wave

signatures stemming from the motion of particles.

To first order in κ, the inverse metric then is

gµν = ηµν − 2κhµν +O(κ2) , (115)

where we raise and lower indices on hµν with ηµν and ηµν , respectively. For example, in a slight

abuse of notation, we denote hµν ≡ ηναh
µα. The determinant of the metric is expanded as

√
−g = 1 + κh+O(κ2) , (116)

where we defined h, the trace of the metric perturbation, as follows:

h ≡ ηµνhµν . (117)

Next, to obtain the field equations of linearized gravity, we need to expand the Christoffel symbols

and the curvature tensors. To first order, the Christoffel symbols then take the form

Γλµν = κ(∂µh
λ
ν + ∂νh

λ
µ − ∂λhµν) +O(κ2) . (118)

This then gives rise to the Ricci tensor and scalar, which, to first order, turn out to be

Rµν = −κ (2hµν + ∂µ∂νh− ∂µ∂αhαν − ∂ν∂αhµα) , (119)

R = −2κ(2h− ∂µ∂νhµν) +O(κ2) . (120)

The left-hand side of the field equations then are

Rµν −
1

2
Rηµν = κ

(
−2hµν − ∂µ∂νh+ ∂µ∂

αhαν + ∂ν∂
αhαµ +2hηµν − ηµν∂α∂βhαβ

)
. (121)
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Now, without going into too much detail, the field hµν is only unique up to a gauge transformation,

hµν → hµν + ∂µεν + ∂νεµ , (122)

where 2κεµ � 1 is an infinitesimal vector field. This gauge invariance is what survives from the

diffeomorphism invariance of general relativity in the linearized limit. This is not too surprising,

and you may actually already know something like this from electromagnetism, wherein the gauge

field Aµ has a gauge invariance Aµ → Aµ + ∂µω for some function ω. Since the “graviton” is also

a gauge boson (much like the “photon” Aµ), this similarity of structures is to be expected and

should not come as a total surprise.

However, the physics should not depend on the gauge! That is, if we use hµν to do our computa-

tions, or hµν + ∂µεν + ∂νεµ, the end result should not depend on it. What is the end result? One

observable in the gravitational field is the curvature (that is, the tidal force between two points).

The curvature should be gauge-independent. And, since the Lagrangian of general relativity is a

scalar made up of a curvature invariant, the Lagrangian itself as well as the field equations should

also be gauge-invariant. (In analogy to electromagnetism, where the “curvature” is F µν , the elec-

tromagnetic field strength, which is also gauge-invariant.) For example, you can check that Rµν

and R are, in fact, gauge-invariant. [Do it! , ]

Now, what to do with the gauge invariance? To do calculations in the real world, it is helpful to

fix the gauge. To that end, we can demand some condition on the hµν ’s to hold, similar to the

good old Lorenz gauge in electromagnetism (remember, when we demanded that, for example,

∂µAµ = 0). Similarly, we demand that

∂µhµν
∗
= λ∂νh . (123)

One can show [Do it! , ] that there exists a gauge transformation εµ that guarantees this

transformation, provided λ 6= 1. If we take the above relation, and insert it into the field equations,

we end up with

Rµν −
1

2
Rηµν

∗
= κ

[
−2ĥµν +

1− 2λ

1− λd

(
ηµν2ĥ− ∂µ∂ν ĥ

)]
. (124)

From here, it is convenient to set λ = 1/2. In that gauge, the field equations of linearized general

relativity take the form

2ĥµν
∗
= −κT µν , gµν = ηµν + 2κhµν , ĥµν = hµν −

1

2
hηµν , κ =

√
8πG . (125)

In the textbook literature on linearized general relativity we often find a slightly different form,

30



related to a different parametrization of the gravitational field perturbation, in which case

2ĥµν
∗
= −2κ2T µν , gµν = ηµν + hµν , ĥµν = hµν −

1

2
hηµν , κ =

√
8πG . (126)

Note that here is no factor of 2κ in the metric perturbation. Since this formulation is more common

for the following considerations, we shall adopt that convention in what follows.

Okay, now that we have the gauge-fixed field equation, we need to find the solution. Luckily, this

differential equation is rather straightforward since it utilizes the flat spacetime wave operator

2 = −∂2
t + ~∇2. This differential equation can be solved by the Green function method. A Green

function G(x, y) is a function that satisfies

2G(x, x′) = δ(4)(x− x′) . (127)

Once this function is found, the general solution to (126) is given by

ĥµν(x) = ĥ0
µν(x)− 2κ2

∫
d4x′G(x, x′)T µν(x

′) . (128)

Here, ĥ0
µν(x) is a homogeneous solution, that is, 2ĥ0

µν = 0, and it can be used to implement the

boundary conditions. In our case it can be set to zero. Since flat spacetime is translation invariant,

the function G(x, y) needs to be a function of the distance between two points, G(x, x′) = G(x−x′).
Its form can be derived by various methods, and it takes the form [3]

G(x− x′) =
1

4π|~x− ~x ′|
δ
(
t− t′ − |~x− ~x ′|

)
θ(t− t′) . (129)

Inserting (129) into our solution (128) we find

ĥµν(x) = −16πG

4π

∫
dt′
∫

d3x′
1

4π|~x− ~x ′|
δ
(
t− t′ − |~x− ~x ′|

)
θ(t− t′)T µν(x′)

= −4G

∫
d3x′

1

|~x− ~x ′|
T µν(t− |~x− ~x ′|, ~x ′) .

(130)

The expression t − |~x − ~x ′| is called retarded time and represents the fact that physical field

propagate with the speed of light in flat spacetime. It is possible to show that the above form

indeed satisfies the Lorenz gauge ∂µĥµν = 0, making use of ∂µT µν = 0.
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3.2 The quadrupole formula

Next, let us sketch the idea how to derive the well-known quadrupole formula. This part will

be omitting a few details here and there, since the derivation takes some detailed algebra, but I

encourage you to look it up in the literature; Ch. 17.8 in [3] has a detailed derivation.

To begin with, notice that the above expression can be further simplified if we only care about the

field far away from the source, that is, |~x| � |~x ′|. To leading order in such a multipole expansion,

we find

ĥµν(x) ≈ −4G

|~x|

∫
d3x′ T µν(t− |~x− ~x ′|, ~x ′) . (131)

And last, if the particles sourcing the gravitational field move slowly compared to the speed of

light (and that is typically justified in the EMRI scenario) then we can neglect retardation effects

and approximate t− |~x− ~x ′| ≈ t− |~x| to obtain

ĥµν(x) ≈ −4G

|~x|

∫
d3x′ T µν(t− |~x|, ~x ′) . (132)

If we now switch to a coordinate system that is tied to the center of mass, we can derive [3]

ĥtt = −4GMtot

|~x|
, ĥti = 0 , (133)

where Mtot =
∫

d3x′ Ttt is the the total mass in that coordinate system, and
∫

d3x′ Tti = 0 because

we are in the center of mass frame. The purely spatial part reads as before,

ĥij(x) = −4G

|~x|

∫
d3x′ T ij(t− |~x|, ~x ′) . (134)

There is a useful identity for integrals over the energy-momentum tensor going back to von Laue,∫
d3x′ T ij(t

′, ~x ′) =
1

2

∂2

∂t′2

∫
d3x′ Ttt(t

′, ~x ′)x′ix
′
j , t′ ≡ t− |~x| . (135)

This can be proved by employing ∂µT µν = 0, re-expressing ∂i∂jT ij via ∂2
t T tt, and integrating by

parts repeatedly. This then implies

ĥij(x) = −2G

|~x|
∂2

∂t′2

∫
d3x′ T tt(t

′, ~x ′) . (136)
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Defining the quadrupole moment

Qij(t
′) ≡

∫
d3x′ T tt(t

′, ~x ′)x′ix
′
j (137)

the above can be conveniently summarized in the quadrupole formula

ĥij(t, x) = −2G

|~x|
d2Qij(t

′)

dt′2

∣∣∣∣
t′=t−|~x|

. (138)

Next, we will use this formula to learn about gravitational wave emission from point particles.

3.3 Gravitational wave radiation from point particles

For slowly moving point particles we can approximate T tt(t, ~x) = ρ(t, ~x). Denoting the particle

trajectory by xµ(τ), the energy density is given by

ρ(t, ~y) = mδ(3)(~y − ~x(τ(t))) . (139)

Note that we are employing the implicit function τ(t) that gives the proper time as a function of

coordinate time t. This is required since we will be interested in describing the events as witnessed

by a distant observer. At the technical level, this function can usually be found easily. Inserting

the above into the quadrupole moment the integration cancels and we are left with

Qij(t) = mxi(τ(t))xj(τ(t)) . (140)

At this point we have to import some knowledge from the textbook literature [3]. Essentially, it

is possible to define a quasilocal energy density for gravitational waves at the quadratic order in

perturbation theory. This quantity is averaged over a small spacetime volume (hence quasilocal),

and this is required to make this quantity gauge invariant. Second, gravitational wave emission

is usually described in the transverse-traceless gauge (called TT-gauge), where the gravitational

perturbation is denoted by ĥTT
µν . Note that this is a special subcase of the Lorenz gauge. Since

this object is traceless, it is useful to define the traceless quadrupole moment

Iij ≡ Qij −
1

3
Qabη

abηij . (141)
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For a point particle this implies

I ij(t) = m

(
xi(τ(t))xj(τ(t))− 1

3
ηabx

a(τ(t))xb(τ(t))ηij
)
. (142)

Using this quantity, one can derive that the emitted energy E and angular momentum L is

dE

dt
= −G

5

〈
I ij ′′′(t)I ij

′′′(t)
〉
, (143)

dL i

dt
= −2G

5
εijkηkm

〈
Ijl′′(t)Ikm′′′(t)

〉
, (144)

where the primes denote differentiation with respect to coordinate time t, and the angular brackets

denote the averaging process. We have not shown this, and this result falls “from the sky” at this

point in the lecture. If you want to learn how to do this, we would need to spend a few more days

deriving things.
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Chapter 4

Extreme-mass ratio inspirals

4.1 Application: Schwarzschild inspiral orbits

The Schwarzschild geodesic equation (99), reduced to the equatorial plane and supplemented by

the conserved quantities E and L, is

0 = ẗ+ 2Γ̃ttr
E

f
ṙ , (145)

0 = r̈ + Γ̃rtt
E2

f 2
+ Γ̃rrrṙ

2 + Γ̃rϕϕ
L2

r4
, (146)

0 = ϕ̈+ 2Γ̃ϕrϕṙ
L

r2
. (147)

In order to implement the gravitational wave backreaction, we now stipulate

dE

dt
≈ −G

5
I ij ′′′(t)I ij

′′′(t) , (148)

dLz

dt
=

dL

dt
≈ −2G

5

(
Ixk
′′(t)Iky

′′′(t)− Iyk
′′(t)Ikx

′′′(t)
)
, (149)

that is, we assumed that all energy and angular momentum loss of the binary system is felt, at

leading order, by the orbiting particle; moreover, we omitted the averaging process since the orbit

is slowly evolving. Next, we need to convert the time derivatives to derivatives with respect to

proper time τ using

d

dt
=

1

ṫ

d

dτ
, (150)
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which needs to be inserted repeatedly to arrive at the second and third time derivative. One finds

ψ′ =
ψ̇

ṫ
,

ψ′′ =
ψ̈

ṫ2
− ψ̇ẗ

ṫ3
,

ψ′′′ =

...
ψ

ṫ3
− 3

ẗψ̈

ṫ4
− 4

ψ̇
...
t

ṫ4
,

(151)

where ψ = ψ(τ) is a function of proper time. Explicitly, the whole system then reads

0 = ẗ+ 2Γ̃ttr
E

f
ṙ , (152)

0 = r̈ + Γ̃rtt
E2

f 2
+ Γ̃rrrṙ

2 + Γ̃rϕϕ
L2

r4
, (153)

0 = ϕ̈+ 2Γ̃ϕrϕṙ
L

r2
, (154)

Ė = −Gṫ
5

( ...
I ij

ṫ3
− 3

ẗÏ ij

ṫ4
− 4

İ ij
...
t

ṫ4

)( ...
I ij

ṫ3
− 3

ẗÏ ij

ṫ4
− 4

İ ij
...
t

ṫ4

)
, (155)

L̇ = −2Gṫ

5

[(
Ïxk
ṫ2
− İxk ẗ

ṫ3

)( ...
I
k
y

ṫ3
− 3

ẗÏky

ṫ4
− 4

İky
...
t

ṫ4

)
− x↔ y

]
, (156)

where now all quantities, including E and L, are τ -dependent. Last, we need to parametrize the

quadrupole moments. This follows from the flat-spacetime coordinate identification

x = r cosϕ , y = r sinϕ , (157)

and results in

Qij(t) = mr2

 cos2 ϕ cosϕ sinϕ 0

cosϕ sinϕ sin2 ϕ 0

0 0 0

 , Q = Qijηij = µr2 , (158)

I ij(t) = mr2

cos2 ϕ− 1
3

cosϕ sinϕ 0

cosϕ sinϕ sin2 ϕ− 1
3

0

0 0 −1
3

 . (159)

In the above, m is the mass of the orbiting black hole. Note that in units where GM = 1, we

can write Gm = µGM , where µ ≡ m/M is the mass ratio. Hence, all radiation corrections are

suppressed by a factor of µ2—another indication of the slow timescale of orbital evolution. The

above system can now be numerically integrated, and the corresponding Mathematica sheet can

be found in appendix A. While this derivation is rather qualitative at this level, it is possible to
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verify that this corresponds to proper motion inside the now time-dependent effective potential,

and indeed leads to a slow orbital decay. In the next revision of the lecture notes, snapshots for a

few cases will be added for illustration.

4.2 Estimating gravitational waveforms

Now that we have obtained the inspiral orbit, we can use the quadrupole formula (138) to determine

the gravitational wave signal,

ĥij(t, x) = −2G

|~x|
d2Qij(t

′)

dt′2

∣∣∣∣
t′=t−|~x|

. (138)

While for the emitted energy and angular momentum of gravitational radiation an averaging

procedure 〈〉 was required, the detection of gravitational wave signals is strictly position-dependent.

This means that in what follows, the spatial dependence remains important.

The propagation and polarization of gravitational waves is most conveniently described in the

so-called transverse-traceless gauge (or TT gauge for short), which we already mentioned before

in passing. The TT gauge is a subclass of the Lorenz gauge, in which we defined

ĥµν = hµν −
1

2
hηµν , ∂µĥµν = 0 . (160)

Further, recall that the gauge transformation of the perturbation hµν is

hµν → hµν + ∂µεν + ∂νεµ , (161)

which for the trace-reversed perturbation ĥµν implies

ĥµν → ĥµν + ∂µεν + ∂νεµ − (∂αε
α)ηµν , (162)

Provided 2εµ = 0, this gauge-transformed expression still solves the same field equations. The

metric perturbation within transverse-traceless gauge is denoted as hTT
µν , and it is defined by

hTT
ti = 0 , ηµνhTT

µν = 0 , (163)

and these conditions are implemented via an εµ that satisfies additionally 2εµ = 0. Since the trace

vanishes, we may also consider its trace-reversed perturbation, since they coincide:

ĥTT
µν = hTT

µν . (164)
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Last, note that the Lorenz gauge condition ∂µĥTT
µν = 0 implies

∂tĥ
TT
tt = 0 . (165)

In the case of time-dependent sources (which is what we are considering) it hence implies that

ĥTT
tt = 0. Let us introduce a spatial projection tensor in the direction of the normalized spatial

vector ni via

P i
j = δij − ninj . (166)

Using this tensor we can construct the transverse-traveless perturbation via

hTT
ij =

(
P a
j P

j
b −

1

2
PijP

ab

)
ĥab . (167)

Adapting an orthogonal spherical reference frame spanned by the 3 unit vectors {er, eΘ, eΦ} with

the vector n in Cartesian coordinates taking the form

ni = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) , (168)

one finds in the TT gauge [1]

hTT
ij =

1

2

0 0 0

0 hΘΘ − hΦΦ 2hΘΦ

0 2hΘΦ hΦΦ − hΘΘ

 , (169)

where the projected coefficients are obtained via coordinate transformation to the spherical system,

ĥΘΘ = cos2 Θ
(
ĥxx cos2 Φ + ĥxy sin 2Φ + ĥyy sin2 Φ

)
+ ĥzz sin2 Θ− sin 2Θ

(
ĥxz cos Φ + ĥyz sin Φ

)
,

ĥΘΦ = cos Θ
(
− 1

2
ĥxx sin 2Φ + ĥxy cos 2Φ +

1

2
ĥyy sin 2Φ

)
+ sin Θ

(
ĥxz sin Φ− ĥyz cos Φ

)
, (170)

ĥΦΦ = ĥxx sin2 Φ− ĥxy sin 2Φ + ĥyy cos2 Φ .

In this notation, the two gravitational wave polarizations are given by

h+ =
1

2
(hΘΘ − hΦΦ) , h× = hΘΦ . (171)

In principle, we can now evaluate the two polarizations and plot them as a function of time, given

the observation point specified by (r,Θ,Φ). While this sounds straightforward, the numerical

difficulty lies again in converting between coordinate time t (which is used in the quadrupole
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formula) and the proper time τ (used for the description of the orbit).

While the TT gauge does give rise to physical quantities related to the polarization properties of

the gravitational wave, they are not gauge invariant. For this reason it is sometimes desirable to

study instead a proper gauge-invariant expression derived purely from the curvature tensors. Since

in our scenario we (in principle, before we started simplifying) are considering a vacuum solution,

a natural object to consider is the Weyl tensor

Cµνρσ = Rµνρσ −
(
ηµ[ρRσ]ν − ην[ρRσ]µ

)
+

1

3
Rηµ[ρησ]ν . (172)

At the level of components, one finds

1

4

(
ḧΘΘ − ḧΦΦ

)
= −CtΘtΘ = −CtΦrΦ = −CrΘrΘ = −CtΦtΦ = +CrΦrΦ = +CtΘrΘ = +CrΦrΦ ,

1

2
ḧΘΦ = −CtΘtΦ = −CrΘrΦ = +CtΘrΦ = +CrΘtΦ . (173)

At the same time, it is customary to adopt what is called a complex null tetrad spanned by the four

vectors {`µ, nµ,mµ, m̄µ}, where m̄µ is the complex conjugate of mµ. This goes back to Newman

and Penrose. All of these vectors are null, and a possible choice for flat spacetime is

` =
1√
2

(et + er) , n =
1√
2

(et − er) , m =
1√
2

(eΘ + ieΦ) , (174)

where et, er, eΘ, and eΦ are the unit normal vectors in each coordinate direction. Expressed by

the components of these vectors, the metric of flat spacetime is

gµν = −`µnν − nµ`ν +mµm̄ν + m̄µmν . (175)

We can read off the non-vanishing overlaps ` ·n = −1, m̄ · m̄ = 1 with the rest vanishing. Now, the

Weyl tensor has 10 independent components, which in this formalism are captured by 5 complex

Weyl Newman–Penrose scalars. For outgoing gravitational waves, the Weyl scalar Ψ4 is a useful

quantity. It is defined as

Ψ4 ≡ Cαβγδn
αm̄βnγm̄δ . (176)

In our case, it takes the form

Ψ4 =
d2

dt2

[
1

2
(hΘΘ − hΦΦ) + ihΘΦ

]
=

1

2

d2

dt2
(h+ + ih×) (177)

Essentially, it is the second derivative of the metric perturbation, whose real part is given by
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plus-polarization, and whose imaginary part is proportional to the cross-polarization. Especially

in numerical relativity, Ψ4 is a quantity often studied at large spatial distances, and it is hence

a good candidate to connect the method described in these lecture notes to the work of other

disciplines in gravitational wave physics.

4.3 Schwarzschild gravitational waveforms

Having determined the inspiral orbits, we can now feed this into the machine we developed. We

first start with the quadrupole moment Qij(t − |~x|) and differentiate it twice with respect to

coordinate time via (151) and plug this into the quadrupole formula (138). Fixing an observation

point {r,Θ,Φ}, we then compute the components in the corresponding transverse-traceless gauge.

Finally, we reorganize the components into the two polarization modes, and then we evaluate the

expressions numerically.

For one data point, the current Mathematica implementation takes around 100 milliseconds,

which is not very fast. Given that in units of GM = 1 and µ = 0.01 we needed to wait until

τ ≈ 150, 000 to see any significant inspiral, using a time spacing of 0.1 would then imply an overall

evaluation time of around 42 hours (for each polarization). Clearly, this needs to be optimized. To

compromise, for the purpose of this lecture, we focus on a smaller window of gravitational wave

signals from τ = 10 . . . 1000 which takes the computation time down to around 15 minutes per

polarization; see Fig. 2 for a plot of the two polarizations.
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Figure 2: System parameter: {µ, r0, E, L} = {10−2, 20GM, 0.97, 3.96GM}. Observation parame-
ters: {r,Θ,Φ} = {10000GM, 0, 0}. Observation duration: t = 10 . . . 1000GM . Blue: + polariza-
tion, orange: × polarization.
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Chapter 5

Detecting deviations from General

Relativity

One of the motivations of considering EMRIs lies in the fact that in principle they allow for long-

term observations, allowing even for small deviations from general relativity to accumulate over

time. In this final chapter we hence want to motivate how such a deviation could look like. While

initially the plan was to focus on a black hole with torsion (hence the torsion-ful introduction to

differential geometry) there is not enough time to develop this properly for the remainder of the

lecture (even though in the future, when these lecture notes are extended and may be offered as a

regular graduate-level course, this may change). As a compromise, let us consider instead another

static black hole solution encountered in general relativity: the Reissner–Nordström solution.

This solution is the gravitational field of a point charge. If the charge parameter vanishes, one

again recovers the Schwarzschild metric. Astrophysically, these solutions are not realistic, since no

macroscopic object would carry a large electric charge. However, in the age of dark matter searches

let us entertain the possibility that the black hole instead carries a charge of some dark vector

boson Aµ. For the sake of this lecture, the feasibility of this scenario is not of primary importance—

rather, it gives us a mathematically straightforward starting point, without too many changes, to

track the influence of a new quantity on the physics of EMRIs.

The Einstein–Maxwell system is given by

Rµν −
1

2
Rgµν = 8πGT µν , (178)

T µν = F µαF ν
α − 1

4
FαβF

αβgµν , (179)

1√
−g

∂µ
(√
−gF µν

)
= 0 , (180)
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∂µF νρ + ∂νF ρµ + ∂ρF µν = 0 . (181)

Here, F µν = ∂µAν − ∂νAµ is the field strength tensor, and Aµ is the potential. The following

metric and potential are an exact solution, called the Reissner-Nordström metric.

ds2 = gµνdx
µdxν = −f(r)dt2 +

dr2

f(r)
+ r2dθ2 + r2 sin2 θdϕ2 , f(r) = 1− 2GM

r
+
q2

r2
,

A = Aµdxµ =
q

r
dt .

(182)

Alternatively, if the “dark charge” is not too convincing, we may think of the line element as the

source of a magnetic monopole charge p as follows [4]:

ds2 = gµνdx
µdxν = −f(r)dt2 +

dr2

f(r)
+ r2dθ2 + r2 sin2 θdϕ2 , f(r) = 1− 2GM

r
+
p2

r2
,

A = Aµdxµ = p cos θdθ .

(183)

Remarkably, the metric has the same form (under the substitution g ↔ p). In either case, no-

tice that this geometry is still time-independent and spherically symmetric, and hence has the

same Killing vectors as the Schwarzschild metric. We can even use the identical formula for the

Christoffel symbols (69). We find the following effective potential and constants of motion:

Veff =

(
1− 2GM

r
+
q2

r2

)(
1 +

L2

r2

)
, E =

(
1− 2GM

r
+
q2

r2

)
ṫ , L = r2ϕ̇ . (184)

A detailed analytical analysis of this effective potential is more involved due to the quartic nature

of the involved polynomials—for this reason we will not develop this further, but rather assume

that for small values of the charge parameter q the far-distance dynamics are essentially identical

to the case of q = 0. In particular, we impose identical boundary conditions for the motion of the

secondary.

For our numerical code, we choose q = 0.01GM for an initial radial distance of r0 = 20GM ,

corresponding to a change in the metric of order (0.01/20)2 ∼ 3 × 10−7 at the initial location of

the secondary. The resulting gravitational waveforms for the time period of t = 0 . . . 50GM can

be seen in Figs. 3 and 4. Their difference is plotted in Fig. 5.
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Figure 3: System parameters: {µ, r0, E, L} = {10−2, 20GM, 0.97, 3.96GM}. Observation parame-
ters: {r,Θ,Φ} = {10000GM, 0, 0}. Observation duration: t = 10 . . . 1000GM . Blue: + polariza-
tion, orange: × polarization.

  

Figure 4: System parameters: {µ, r0, E, L, q} = {10−2, 20GM, 0.97, 3.96GM, 10−2GM}. Observa-
tion parameters: {r,Θ,Φ} = {10000GM, 0, 0}. Observation duration: t = 10 . . . 1000GM . Blue:
+ polarization, orange: × polarization.
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Figure 5: Difference of the two waveforms plotted in Figs. 3 and 4. The large degree of periodicity
with almost equal frequency, but the much lower strain amplitude (a factor of ∼ 80) suggests that
the main difference is a small dephasing between the waveforms.

Conclusions

We have arrived at our goal: a Mathematica sheet that computes the gravitational waveforms

for an inspiral orbit, using the quadrupole formula for energy and angular momentum emission

as an approximation—and you can download all sheets via the links in appendix A. Change some

parameters, add retardation effects, model the self force, and see what happens!

Of course this is not the end of the story: we made several simplifications, and, most notably,

we neglected important effects, such as gravitational self force. Nevertheless, as a zeroth order

approximation it is still surprising that the results are qualitatively physically accurate.

I hope that this lecture (or these lecture notes) have inspired you to learn more about this fasci-

nating and timely topic. Gravitational waves are a new medium that Nature has gifted us to learn

more about our Universe—in a hundred years from now, will we look at gravitational waves the

similarly as we look at electromagnetic waves today? Only time will tell.
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Appendix A

List of Mathematica code

Course website: http://www.spintwo.net/Courses/EMRI-101/

Mathematica notebooks:

C1. Static & spherically symmetric Killing vectors

http://www.spintwo.net/Courses/EMRI-101/emri-101-c1-killing-vectors-v1.nb

C2. Schwarzschild metric: check of field equations

http://www.spintwo.net/Courses/EMRI-101/emri-101-c2-schwarzschild-derivation-v1.nb

C3. Schwarzschild metric: geodesic motion

http://www.spintwo.net/Courses/EMRI-101/emri-101-c3-schwarzschild-geodesics-v1.nb

C4. Schwarzschild metric: inspiral orbits

http://www.spintwo.net/Courses/EMRI-101/emri-101-c4-schwarzschild-inspirals-v1.nb

C5. Schwarzschild metric: gravitational waveforms

http://www.spintwo.net/Courses/EMRI-101/emri-101-c5-schwarzschild-waveforms-v1.nb

C6. Reissner–Nordström metric: gravitational waveforms

http://www.spintwo.net/Courses/EMRI-101/emri-101-c6-reissner-nordstroem-waveforms-v1.nb

C7. Comparison of waveforms

http://www.spintwo.net/Courses/EMRI-101/emri-101-c7-comparison-v1.nb
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Appendix B

List of abbreviations and symbols

EMRI extreme mass-ratio inspiral

≡ definition

M primary black hole mass (the big, central one)

m secondary black hole mass (the small one that is inspiralling)

µ mass ratio µ = m/M � 1

κ =
√

8πG Einstein’s gravitational constant, where G is Newton’s gravitational constant

(µν) symmetrization of indices, T (µν) = 1
2
(T µν + T νµ)

[µν] antisymmetrization of indices, T [µν] = 1
2
(T µν − T νµ)
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